Publications by authors named "Michel E Goldberg"

This article shares the author's memories of his collaborations with François Gros when the latter was Professor at the University of Paris 7, then Director of the Institut Pasteur, then President of the Pasteur-Weizmann Council. He underlines the major contributions of "his boss" in the exercise of these functions.

View Article and Find Full Text PDF

Heparin has been shown to regulate human neutrophil elastase (HNE) activity. We have assessed the regulatory effect of heparin on Tissue Inhibitor of Metalloproteases-1 [TIMP-1] hydrolysis by HNE employing the recombinant form of TIMP-1 and correlated FRET-peptides comprising the TIMP-1 cleavage site. Heparin accelerates 2.

View Article and Find Full Text PDF

The hallmarks of prion diseases are the conversion of the normal prion into an abnormal protease resistant isoform and its brain accumulation. Purification of the native abnormal prion isoform for biochemical and biophysical studies has been hampered by poor recovery from brain tissue. An epithelial cell transfected with the ovine VRQ allele prion, called Rov9, has been used to select prion high-producer cells by flow cytometry.

View Article and Find Full Text PDF

Water from the solvent very strongly absorbs light in the frequency range of interest for studying protein structure by infrared (IR) spectroscopy. This renders handling of the observation cells painstaking and time consuming, and limits the reproducibility of the measurements when IR spectroscopy is applied to proteins in aqueous solutions. These difficulties are circumvented by the use of an Attenuated Total Reflectance (ATR) accessory.

View Article and Find Full Text PDF

The C-terminal fragment of Plasmodium falciparum merozoite surface protein 1 (F19) is a leading candidate for the development of a malaria vaccine. Successful vaccination trials on primates, immunochemistry, and structural studies have shown the importance of its native conformation for its protective role against infection. F19 is a disulfide-rich protein, and the correct pairing of its 12 half-cystines is required for the native state of the protein.

View Article and Find Full Text PDF

Some non-detergent sulfobetaines had been shown to prevent aggregation and improve the yield of active proteins when added to the buffer during in vitro protein renaturation. With the aim of designing more efficient folding helpers, a series of non-detergent sulfobetaines have been synthesized and their efficiency in improving the renaturation of a variety of proteins (E. coli tryptophan synthase and beta-D-galactosidase, hen lysozyme, bovine serum albumin, a monoclonal antibody) have been investigated.

View Article and Find Full Text PDF

R67 dihydrofolate reductase (DHFR) is a homotetrameric enzyme. Its subunit has a core structure consisting of five antiparallel beta-strands that form a compact beta-barrel. Our interest was to describe the molecular mechanism of the complete folding pathway of this beta-sheet protein, focusing on how the oligomerization steps are coordinated with the formation of secondary and tertiary structures all along the folding process.

View Article and Find Full Text PDF

Previous studies have shown that reduced hen egg white lysozyme refolds and oxidizes according to a linear model, in which the number of disulfide bonds increases sequentially. In this study, we describe the kinetics of native tertiary structure formation during the oxidative-renaturation of reduced hen egg white lysozyme, as monitored using an immunochemical pulsed-labeling method based on enzyme-linked immunosorbent assay (ELISA) in conjunction with two monoclonal antibodies (mAb). Each of these antibodies recognizes a separate face of the native lysozyme surface and, more importantly, each epitope is composed of discontinuous regions of the polypeptide chain.

View Article and Find Full Text PDF

To probe the role of individual disulfide bonds in the folding kinetics of hen lysozyme, the variants with two mutations, C30A,C115A, C64A,C80A, and C76A,C94A, were constructed. The corresponding proteins, each lacking one disulfide bond, were produced in Escherichia coli as inclusion bodies and solubilized, purified, and renatured/oxidized using original protocols. Their enzymatic, spectral, and hydrodynamic characteristics confirmed that their conformations were very similar to that of native wild-type (WT) lysozyme.

View Article and Find Full Text PDF