Publications by authors named "Michel Dallaporta"

Microglia are involved in neuroinflammatory processes during diverse pathophysiological conditions. To date, the possible contribution of these cells to deoxynivalenol (DON)-induced brain inflammation and anorexia has not yet been evaluated. DON, one of the most abundant trichothecenes found in cereals, has been implicated in mycotoxicosis in both humans and farm animals.

View Article and Find Full Text PDF

The metabolic syndrome, which comprises obesity and diabetes, is a major public health problem and the awareness of energy homeostasis control remains an important worldwide issue. The energy balance is finely regulated by the central nervous system (CNS), notably through neuronal networks, located in the hypothalamus and the dorsal vagal complex (DVC), which integrate nutritional, humoral and nervous information from the periphery. The glial cells' contribution to these processes emerged few year ago.

View Article and Find Full Text PDF

The ribotoxin deoxynivalenol (DON) is a trichothecene found on cereals responsible for mycotoxicosis in both humans and farm animals. DON toxicity is characterized by reduced food intake, diminished nutritional efficiency and immunologic effects. The present study was designed to further characterize the alterations in energy metabolism induced by DON intoxication.

View Article and Find Full Text PDF

Research on energy homeostasis has focused on neuronal signaling; however, the role of glial cells has remained little explored. Glial endozepines exert anorexigenic actions by mechanisms which remain poorly understood. In this context, the present study was designed to decipher the mechanisms underlying the anorexigenic action of endozepines and to investigate their potential curative effect on high-fat diet-induced obesity.

View Article and Find Full Text PDF

Nesfatin-1, an 82-amino acid peptide encoded by the secreted precursor nucleobinin-2 (NUCB2), exerts potent anorexigenic action independently of leptin signaling. This propensity has propelled this peptide and its analogues as potential anti-obesity drug candidates. However, a more extensive comprehension of its biological actions is needed prior to envisaging its potential use in the treatment of metabolic diseases.

View Article and Find Full Text PDF

Chronic low-grade inflammation is known to be linked to obesity, and to occur in the early stages of the disease. This mechanism is complex and involves numerous organs, cells, and cytokines. In this context, inflammation of white adipose tissue seems to play a key role in the development of obesity.

View Article and Find Full Text PDF

Endozepines are endogenous ligands for the benzodiazepine receptors and also target a still unidentified GPCR. The endozepine octadecaneuropeptide (ODN), an endoproteolytic processing product of the diazepam-binding inhibitor (DBI) was recently shown to be involved in food intake control as an anorexigenic factor through ODN-GPCR signaling and mobilization of the melanocortinergic signaling pathway. Within the hypothalamus, the DBI gene is mainly expressed by non-neuronal cells such as ependymocytes, tanycytes, and protoplasmic astrocytes, at levels depending on the nutritional status.

View Article and Find Full Text PDF

The central nervous system (CNS) monitors modifications in metabolic parameters or hormone levels and elicits adaptive responses such as food intake regulation. Particularly, within the hypothalamus, leptin modulates the activity of pro-opiomelanocortin (POMC) neurons which are critical regulators of energy balance. Consistent with a pivotal role of the melanocortin system in the control of energy homeostasis, disruption of the POMC gene causes hyperphagia and obesity.

View Article and Find Full Text PDF

Trichothecenes are toxic metabolites produced by fungi that constitute a worldwide hazard for agricultural production and both animal and human health. More than 40 countries have introduced regulations or guidelines for food and feed contamination levels of the most prevalent trichothecene, deoxynivalenol (DON), on the basis of its ability to cause growth suppression. With the development of analytical tools, evaluation of food contamination and exposure revealed that a significant proportion of the human population is chronically exposed to DON doses exceeding the provisional maximum tolerable daily dose.

View Article and Find Full Text PDF

Scope: Deoxynivalenol (DON) is the most common fungi toxin contaminating cereals and cereal-derived products. High consumption of DON is implicated in mycotoxicoses and causes a set of symptoms including diarrhea, vomiting, reduced weight gain or immunologic effects. However, such clinical intoxications are rare in humans, who are most frequently, exposed to low DON doses without developing acute symptoms.

View Article and Find Full Text PDF

Objective: The study was designed to determine metformin effects on meal pattern, gastric emptying, energy expenditure, and to identify metformin-sensitive neurons and their phenotype.

Methods: This study was performed on C57BL/6J and obese/diabetic (db/db) mice. Metformin (300 mg/kg) was administered by oral gavage.

View Article and Find Full Text PDF

T-2 toxin is one of the most toxic Fusarium-derived trichothecenes found on cereals and constitutes a widespread contaminant of agricultural commodities as well as commercial foods. Low doses toxicity is characterized by reduced weight gain. To date, the mechanisms by which this mycotoxin profoundly modifies feeding behavior remain poorly understood and more broadly the effects of T-2 toxin on the central nervous system (CNS) have received limited attention.

View Article and Find Full Text PDF

Type 2 diabetes (T2D) represents a significant global epidemic with more than 285 million people affected worldwide. Regulating glycemia in T2D patients can be partially achieved with currently available treatment, but intensive research during the last decades have led to the discovery of modified compounds or new targets that could represent great hope for safe and effective treatment in the future. Among them, targets in the CNS that are known to control feeding and body weight have been also shown to exert glucoregulatory actions, and could be a key in the development of a new generation of drugs in the field of T2D.

View Article and Find Full Text PDF

Brainstem structures such as the nucleus of the solitary tract (NTS) and the dorsal motor nucleus of the vagus nerve (DMNX) are essential for the digestive function of the stomach. A large number of neurotransmitters including glutamate and gamma-aminobutyric acid (GABA) are involved in the central control of gastric functions. However, the neuropeptidergic systems implicated in this process remain undetermined.

View Article and Find Full Text PDF

Deoxynivalenol (DON), mainly produced by Fusarium fungi, and also commonly called vomitoxin, is a trichothecene mycotoxin. It is one of the most abundant trichothecenes which contaminate cereals consumed by farm animals and humans. The extent of cereal contamination is strongly associated with rainfall and moisture at the time of flowering and with grain storage conditions.

View Article and Find Full Text PDF

Deoxynivalenol (DON), produced by the cereal-contaminating Fusarium fungi, is a major trichothecene responsible for mycotoxicoses in farm animals, including swine. The main effect of DON-intoxication is food intake reduction and the consequent body weight loss. The present study aimed to identify brain structures activated during DON intoxication in pigs.

View Article and Find Full Text PDF

Cerebrospinal fluid (CSF) contacting neurones have been observed in various brain regions such as the hypothalamus, the dorsal nucleus of the raphe and around the central canal (cc) of the spinal cord but their functional role remains unclear. At the level of the spinal cord, subependymal cerebrospinal fluid contacting neurones (S-CSF-cNs) present a peculiar morphology with a soma close to the ependymal layer, a process projecting towards the cc and ending with a bud and a cilium. These neurones were recently shown to express polycystin kidney disease 2-like 1 (PKD2L1 or TRPP3) channels that are members of the polycystin subtype of the transient receptor potential (TRP) channel superfamily and that have been proposed as either chemo- or mechanoreceptors in several tissues.

View Article and Find Full Text PDF

Physiological regulations of energy balance and body weight imply highly adaptive mechanisms which match caloric intake to caloric expenditure. In the central nervous system, the regulation of appetite relies on complex neurocircuitry which disturbance may alter energy balance and result in anorexia or obesity. Deoxynivalenol (DON), a trichothecene, is one of the most abundant mycotoxins found on contaminated cereals and its stability during processing and cooking explains its widespread presence in human food.

View Article and Find Full Text PDF

Deoxynivalenol (DON), one of the most abundant trichothecenes found on cereals, has been implicated in mycotoxicoses in both humans and farm animals. Low-dose toxicity is characterized by reduced weight gain, diminished nutritional efficiency, and immunologic effects. The levels and patterns of human food commodity contamination justify that DON consumption constitutes a public health issue.

View Article and Find Full Text PDF

Obesity is one of the most important and disturbing global epidemic that affects humans, with more than 2 billion people overweight and 700 million obese predicted for 2015 by the World Health Organization. Obesity treatment represents then one of the most exciting challenges for the academic researchers and the pharmaceutical industry. But to date, this community failed to develop safe and effective treatments with a good risk/benefit profile.

View Article and Find Full Text PDF

Metabolic syndromic inner ear pathology is a recognized condition in clinical practice but the possible causes remain controversial. We have previously reported that chronically-implanted estrogen implants in guinea pig results in hyperprolactinemia and hearing loss together with otic bone dysmorphology. The animals also present with anorexia.

View Article and Find Full Text PDF

While the evidences emphasizing the role of astroglial cells in numerous aspects of information processing within the brain merges, the literature dealing with the involvement of this cell population in the signalization involved in feeding behavior and energetic homeostasis remains scarce. Nevertheless, some clues are now available indicating that glia could play a dynamic role in the regulation of energy balance, and that strengthening research effort in this field may further our understanding of the mechanisms controlling feeding behaviour. In the present review, we have summarized recent data indicating that the multifaceted glial compartment of the brainstem should be considered in future research aimed at identifying feeding-related processes operating at this level.

View Article and Find Full Text PDF

Recently, a novel factor with anorexigenic properties was identified and called nesfatin-1. This protein (82 aac) is not only expressed in peripheral organs but it is also found in neurons located in specific structures including the hypothalamus and the brainstem, two sites strongly involved in food intake regulation. Here, we studied whether some of the neurons that become activated following an injection of an anorectic dose of lipopolysaccharides (LPS) exhibit a nesfatin-1 phenotype.

View Article and Find Full Text PDF

Recent data show that hormone replacement therapy, involving estrogen together with progestin, can promote hearing loss (Guimaraes, P., Frisina, S.T.

View Article and Find Full Text PDF