Sphingosine-1-phosphate (S1P) is a potent bioactive lipid mediator that acts as a natural ligand upon binding to five different receptors that are located in astrocytes, oligodendrocytes, microglial and neuronal cells. Recently, global activation of these receptors by FTY720 (fingolimod) has been suggested to provide neuroprotection in animal model of Parkinson's disease (PD). Among S1P receptors, the subtype 1 (S1P1R) has been linked to features of neuroprotection and, using the selective agonist SEW2871, the present investigation assessed potential benefits (and mechanisms) of this receptor subtype in an established animal model of PD.
View Article and Find Full Text PDFAkt protein family (Akt1, Akt2 and Akt3) of serine/threonine kinases, also known as protein kinase B, are enzymes implicated in many physiological and pathological processes in the central nervous system. A striking feature of these enzymes is their ability to interact with several molecular targets such as the glycogen synthase kinase 3 (GSK-3). Among Akt isoforms, the Akt3 is significantly more expressed in the brain and the present investigation was designed to determine whether the Akt3/GSK-3 pathway plays a role in the learning of a complex motor skill.
View Article and Find Full Text PDFBackground: Tardive dyskinesia is a delayed and potentially irreversible motor complication arising from chronic exposure to antipsychotic drugs. Interaction of antipsychotic drugs with G protein-coupled receptors triggers multiple intracellular events. Nevertheless, signaling pathways that might be associated with chronic unwanted effects of antipsychotic drugs remain elusive.
View Article and Find Full Text PDFThe protein kinase B (PKB/Akt), found in three distinctive isoforms (PKBα/Akt1, PKBβ/Akt2, PKBγ/Akt3), is implicated in a variety of cellular processes such as cell development, growth and survival. Although Akt3 is the most expressed isoform in the brain, its role in cerebral functions is still unclear. In the present study, we investigated the behavioral, electrophysiological and biochemical consequences of Akt3 deletion in mice.
View Article and Find Full Text PDFRecent studies indicate that Tau phosphorylation can be modulated by the compound FTY720-P, a global sphingosine-1-phosphate receptor (S1PR) agonist. The present work compared the effects of more selective S1PR agonists on Tau properties, using rat hippocampal slices as model system. Whereas Tau phosphorylation was not modified by the S1PR3 agonist CYM5541, Tau-Ser262 phosphorylation was significantly decreased by treatment with the S1PR1 agonist SEW2871.
View Article and Find Full Text PDFSphingosine-1-phosphate (S1P) is a ceramide derivative serving not only as a regulator of immune properties but also as a modulator of brain functions. To better understand the mechanism underlying the effects of S1P on brain functions, we investigated the potential impact of S1P receptor (S1PR) activation on NMDA receptor subunits. We used acute rat hippocampal slices as a model system, and determined the effects of the active phosphorylated S1P analog, fingolimod (FTY720P) on various NMDA receptors.
View Article and Find Full Text PDFThe lysosomal acid ceramidase, an enzyme known to limit intracellular ceramide accumulation, has been reported to be defective in neurodegenerative disorders. We show here that rat hippocampal slices, preincubated with the acid ceramidase inhibitor (ACI) d-NMAPPD, exhibit increased N-methyl-D-aspartate (NMDA) receptor-mediated field excitatory postsynaptic potentials (fEPSPs) in CA1 synapses. The ACI by itself did not interfere with either paired pulse facilitation or alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor-mediated fEPSPs, indicating that its influence on synaptic transmission is postsynaptic in origin and specific to the NMDA subtype of glutamate receptors.
View Article and Find Full Text PDFThe mammalian target of rapamycin (mTOR) kinase is a critical regulator of mRNA translation and is suspected to be involved in various long-lasting forms of synaptic and behavioral plasticity. However, its role in motor learning and control has never been examined. This study investigated, in mice, the implication of mTOR in the learning processes associated with the accelerating rotarod task.
View Article and Find Full Text PDFRecently, striatal-enriched protein tyrosine phosphatase (STEP) and its upstream regulator protein kinase A (PKA) have been suspected to play a role in the intracellular mechanisms of fear conditioning and spatial memory. However, whether they contribute to the learning and memory of motor skills is totally unknown. In this study, we have investigated the role of STEP and PKA activities during motor skill learning associated with the accelerating rotarod task.
View Article and Find Full Text PDFThe molecular mechanisms that regulate Tau phosphorylation are complex and currently incompletely understood. In the present study, pharmacological inhibitors were deployed to investigate potential processes by which the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors modulates Tau phosphorylation in rat hippocampal slices. Our results demonstrated that Tau phosphorylation at Ser199-202 residues was decreased in NMDA-treated hippocampal slices, an effect that was not reproduced at Ser262 and Ser404 epitopes.
View Article and Find Full Text PDFAlthough there is evidence that nicotinic acetylcholine (Ach) receptors are influenced by ceramides, we do not currently know whether or not these sphingolipids can also regulate the muscarinic subtypes of Ach receptors. Using the whole-cell patch technique, we demonstrated that the effectiveness of the muscarinic receptor agonist pilocarpine, in enhancing spontaneous inhibitory postsynaptic currents in CA1 pyramidal cells, was completely abolished in hippocampal slices pre-exposed to the ceramide-generating enzyme sphingomyelinase (SMase). Western blot experiments, performed with biotinylated hippocampal membranes, showed that this electrophysiological defect possibly relies on the loss of M1 muscarinic Ach receptors at the cell surface.
View Article and Find Full Text PDFRecent findings suggest that the neurotransmitter dopamine (DA) system plays a role in motor control and the acquisition of habits and skills. However, isolating DA-mediated motor learning from motor performance remains challenging as most studies include often severely DA-depleted mice. Using the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), we investigated the effect of various degrees of DA-depletion in mice on three tests of motor behaviors: the accelerating rotarod, wire suspension and pole tests.
View Article and Find Full Text PDFPharmacological dopamine replacement with l-3,4-dihydroxyphenylalanine (L-DOPA) remains the most effective approach to treat the motor symptoms of Parkinson's disease (PD). However, as the disease progresses, the therapeutic response to L-DOPA gradually becomes erratic and is associated with the emergence of dyskinesia in the majority of patients. The pathogenesis of L-DOPA-induced dyskinesia (LID) is still unknown.
View Article and Find Full Text PDFAccumulating evidence proposes that the striatum, known to control voluntary movement, may also play a role in learning and memory. Striatum learning is thought to require long-lasting reorganization of striatal circuits and changes in the strength of synaptic connections during the memorization of a complex motor task. Whether the ionotropic glutamate receptor N-methyl-D-aspartate (NMDAR) contributes to the molecular mechanisms of these memory processes is still unclear.
View Article and Find Full Text PDFMuch research has implicated the striatum in motor learning, but the underlying mechanism is still under extensive investigation. In this study, genome-wide analysis of gene expression was conducted in mice that have learned a complex motor task. It is well recognized that successful learning requires repetitive training and is learned slowly over several training sessions.
View Article and Find Full Text PDFPhysiological activation of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors has been proposed to play a key role in both neuronal cell function and dysfunction. In the present study, we used selective NMDA receptor antagonists to investigate the involvement of NR2A and NR2B subunits in the modulatory effect of basal NMDA receptor activity on the phosphorylation of Tau proteins. We observed, in acute hippocampal slice preparations, that blockade of NR2A-containing NMDA receptors by the NR2A antagonist NVP-AAM077 provoked the hyperphosphorylation of a residue located in the proline-rich domain of Tau (i.
View Article and Find Full Text PDFMicrotubules are involved in the formation of axons and dendrites, maintenance of neuronal morphology, and cellular trafficking. Recent studies suggest that drugs affecting dopamine activity in the brain can induce cytoskeletal modifications. For instance, we have demonstrated in acute rat brain slices a molecular chain of events connecting dopamine D1 receptor to aberrant phosphorylation of the microtubule-associated protein tau.
View Article and Find Full Text PDFIt is well known that motor skill learning is characterized by rapid improvement in performances within the first training session and a slower progression in the following sessions that is correlated to the consolidation phase. Our goal was to establish the regional mapping of neural activity in relation to the motor skill learning included in the accelerating rotarod task using Zif268, c-Fos and ERK 1/2. As ERK 1/2 activity is also a marker of adaptive response to synaptic activation for newly learned events, its role was also verified.
View Article and Find Full Text PDFBackground: In Huntington's disease (HD), an expanded CAG repeat produces characteristic striatal neurodegeneration. Interestingly, the HD CAG repeat, whose length determines age at onset, undergoes tissue-specific somatic instability, predominant in the striatum, suggesting that tissue-specific CAG length changes could modify the disease process. Therefore, understanding the mechanisms underlying the tissue specificity of somatic instability may provide novel routes to therapies.
View Article and Find Full Text PDFl-3,4-dihydroxyphenylalanine methyl ester hydrochloride (l-DOPA) is the gold standard for symptomatic treatment of Parkinson's disease (PD), but long-term therapy is associated with the emergence of abnormal involuntary movements (AIMS) known as l-DOPA-induced dyskinesias (LID). The molecular changes underlying LID are not completely understood. Using the 6-hydroxydopamine-lesioned rat model of PD, we showed that l-DOPA elicits profound alterations in the activity of three LID molecular markers, namely DeltaFosB, dopamine, cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) and extracellular signal-regulated kinases 1 and 2 (ERK1/2), as well as in phosphorylation levels of the cytoskeletal-associated protein tau.
View Article and Find Full Text PDFIncreasing evidence is demonstrating that drugs affecting dopamine levels in the brain induce cytoskeletal modifications. These evolving changes may impact neuronal synaptic plasticity as cytoskeletal constituents are involved in the maintenance of dendritic processes, and any alterations in their stability could influence major cellular compartments of neurons, such as dendrites, spines and synapses. Here, we describe a molecular chain of events that links dopamine D1 receptor activation to hyperphosphorylation of the microtubule-associated protein tau, which is normally involved in microtubules stabilization.
View Article and Find Full Text PDFUsing selective bi-directional breeding procedures, two different lines of mice were developed. The NC900 line is highly reactive and attacks their social partners without provocation, whereas aggression in NC100 animals is uncommon in social environments. The enhanced reactivity of NC900 mice suggests that emotionality may have been selected with aggression.
View Article and Find Full Text PDFNeuropsychopharmacology
October 2008
NMDA receptor-mediated glutamate transmission is required for several forms of neuronal plasticity. Its role in the neuronal responses to addictive drugs is an ongoing subject of investigation. We report here that the acute locomotor-stimulating effect of cocaine is absent in NMDA receptor-deficient mice (NR1-KD).
View Article and Find Full Text PDFWe have recently documented that phosphorylation of the GluR1 subunit of alpha-amino-3-hydroxy-5-methylisoxazole-propionate (AMPA) glutamate receptors is influenced by calcium-independent forms of phospholipase A(2) (iPLA(2)) activity in the brain. Given the importance of GluR1 subunit phosphorylation in the control of AMPA receptor delivery to synaptic membranes, we tested the influence of iPLA(2) activity on AMPA receptor distribution between neuronal compartments, using organotypic cultured hippocampal slices. In agreement with earlier reports, the iPLA(2) inhibitor bromoenol lactone (BEL) markedly enhanced the phosphorylation of the GluR1 subunit at both Ser831 and Ser845 residues.
View Article and Find Full Text PDF