We present a neural network methodology for clustering large data sets into pertinent groups. We applied this methodology to analyze the phytoplankton absorption spectra data gathered by the Laboratoire d'Océanographie de Villefranche. We first partitioned the data into 100 classes by means of a self-organizing map (SOM) and then we clustered these classes into 6 significant groups.
View Article and Find Full Text PDFSpectral absorption coefficients of phytoplankton can now be derived, under some assumptions, from hyperspectral ocean color measurements and thus become accessible from space. In this study, multilayer perceptrons have been developed to retrieve information on the pigment composition and size structure of phytoplankton from these absorption spectra. The retrieved variables are the main pigment groups (chlorophylls a, b, c, and photosynthetic and nonphotosynthetic carotenoids) and the relative contributions of three algal size classes (pico-, nano-, and microphytoplankton) to total chlorophyll a.
View Article and Find Full Text PDFWe present a statistical analysis of a large set of absorption spectra of phytoplankton, measured in natural samples collected from ocean water, in conjunction with detailed pigment concentrations. We processed the absorption spectra with a sophisticated neural network method suitable for classifying complex phenomena, the so-called self-organizing maps (SOM) proposed by Kohonen [Kohonen, Self Organizing Maps (Springer-Verlag, 1984)]. The aim was to compress the information embedded in the data set into a reduced number of classes characterizing the data set, which facilitates the analysis.
View Article and Find Full Text PDF