Calcium-mobilizing hormones and neurotransmitters are known to affect cell morphology and function including cell differentiation or division. In this study, we examined vasopressin (AVP)-induced morphological changes in a polarized system of rat hepatocytes. Light and electron microscope observations showed that AVP induced microvilli formation and a remodeling of the isolated hepatocyte F-actin submembrane cytoskeleton, these two events being correlated.
View Article and Find Full Text PDFBackground/aims: In the liver, InsP(3)-dependent agonists such as vasopressin and noradrenaline induce tightly coordinated sequences of intracellular Ca(2+) increases, leading to apparent unidirectional Ca(2+) waves. In previous works, we have postulated that cell-to-cell differences in hormone receptor density create a cellular sensitivity gradient that determines which cell initiates the intercellular Ca(2+) wave and the direction of propagation of the Ca(2+) signal. The aim of this study was to test directly this hypothesis.
View Article and Find Full Text PDF