Philos Trans R Soc Lond B Biol Sci
December 2023
Reptilia exploit a large diversity of food resources from plant materials to living mobile prey. They are among the first tetrapods that needed to drink to maintain their water homeostasis. Here were compare the feeding and drinking mechanisms in Reptilia through an empirical approach based on the available data to open perspectives in our understanding of the evolution of the various mechanisms determined in these Tetrapoda for exploiting solid and liquid food resources.
View Article and Find Full Text PDFHabitat loss is threatening natural communities worldwide. Small and isolated populations suffer from inbreeding and genetic drift, which jeopardize their long-term survival and adaptive capacities. However, the consequences of habitat loss for reciprocal coevolutionary interactions remain poorly studied.
View Article and Find Full Text PDFUnderstanding the functioning of natural metapopulations at relevant spatial and temporal scales is necessary to accurately feed both theoretical eco-evolutionary models and conservation plans. One key metric to describe the dynamics of metapopulations is dispersal rate. It can be estimated with either direct field estimates of individual movements or with indirect molecular methods, but the two approaches do not necessarily match.
View Article and Find Full Text PDFGlobal biodiversity declines, largely driven by climate and land-use changes, urge the development of transparent guidelines for effective conservation strategies. Species distribution modeling (SDM) is a widely used approach for predicting potential shifts in species distributions, which can in turn support ecological conservation where environmental change is expected to impact population and community dynamics. Improvements in SDM accuracy through incorporating intra- and interspecific processes have boosted the SDM field forward, but simultaneously urge harmonizing the vast array of SDM approaches into an overarching, widely adoptable, and scientifically justified SDM framework.
View Article and Find Full Text PDFAdaptive radiations occur mostly in response to environmental variation through the evolution of key innovations that allow emerging species to occupy new ecological niches. Such biological innovations may play a major role in niche divergence when emerging species are engaged in reciprocal ecological interactions. To demonstrate coevolution is a difficult task; only a few studies have confirmed coevolution as driver of speciation and diversification.
View Article and Find Full Text PDFThe seventh BMC Ecology competition attracted entries from talented ecologists from around the world. Together, they showcase the beauty and diversity of life on our planet as well as providing an insight into the biological interactions found in nature. This editorial celebrates the winning images as selected by the Editor of BMC Ecology and senior members of the journal's editorial board.
View Article and Find Full Text PDFThe sixth BMC Ecology Image Competition received more than 145 photographs from talented ecologists around the world, showcasing the amazing biodiversity, natural beauty and biological interactions found in nature. In this editorial, we showcase the winning images, as selected by our guest judge, Professor Zhigang Jiang from the Institute of Zoology of the Chinese Academy of Sciences, with help from the journal's editorial board. Enjoy!
View Article and Find Full Text PDFHabitat fragmentation increasingly threatens the services provided by natural communities and ecosystem worldwide. An understanding of the eco-evolutionary processes underlying fragmentation-compromised communities in natural settings is lacking, yet critical to realistic and sustainable conservation. Through integrating the multivariate genetic, biotic and abiotic facets of a natural community module experiencing various degrees of habitat fragmentation, we provide unique insights into the processes underlying community functioning in real, natural conditions.
View Article and Find Full Text PDFWhen, how often and for how long organisms mate can have strong consequences for individual fitness and are crucial aspects of evolutionary ecology. Such determinants are likely to be of even greater importance in monandrous species and species with short adult life stages. Previous work suggests that mobility, a key dispersal-related trait, may affect the dynamics of copulations, but few studies have investigated the impact of individual mobility on mating latency, copulation duration and oviposition latency simultaneously.
View Article and Find Full Text PDFFor the fifth year, BMC Ecology is proud to present the winning images from our annual image competition. The 2017 edition received entries by talented shutterbug-ecologists from across the world, showcasing research that is increasing our understanding of ecosystems worldwide and the beauty and diversity of life on our planet. In this editorial we showcase the winning images, as chosen by our Editorial Board and guest judge Chris Darimont, as well as our selection of highly commended images.
View Article and Find Full Text PDFDispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals.
View Article and Find Full Text PDFThe existence of dispersal syndromes contrasting disperser from resident phenotypes within populations has been intensively documented across taxa. However, how such suites of phenotypic traits emerge and are maintained is largely unknown, although deciphering the processes shaping the evolution of dispersal phenotypes is a key in ecology and evolution. In this study, we created artificial populations of a butterfly, in which we controlled for individual phenotypes and measured experimentally the roles of selection and genetic constraints on the correlations between dispersal-related traits: flight performance and wing morphology.
View Article and Find Full Text PDFDispersal is central in ecology and evolution because it influences population regulation, adaptation, and speciation. In many species, dispersal is different between genders, leading to sex-biased dispersal. Several theoretical hypotheses have been proposed to explain the evolution of this bias: the resource competition hypothesis proposed by Greenwood, the local mate competition hypothesis, and the inbreeding avoidance hypothesis.
View Article and Find Full Text PDFDispersal and migration are superficially similar large-scale movements, but which appear to differ in terms of inter-individual behavioural synchronization. Seasonal migration is a striking example of coordinated behaviour, enabling animal populations to track spatio-temporal variation in ecological conditions. By contrast, for dispersal, while social context may influence an individual's emigration and settlement decisions, transience is believed to be mostly a solitary behaviour.
View Article and Find Full Text PDFTrends Ecol Evol
December 2015
A new framework in which the multiple levels of molecular variations contribute to phenotypic variations in a complex, nonlinear and interactive way, challenges the hierarchical nature of the relationships between the genotypic and phenotypic spaces. This individual-centered framework provides new insights on the evolutionary mechanisms involved in the production of phenotypes. We propose to move this research agenda forward by combining selection experiments and functional genetics.
View Article and Find Full Text PDFFor the third time, BMC Ecology is delighted to announce the winners of our Image Competition. This year featured entries from all over the world and showcased not only the creativity and talent of the participants, but also the exquisite beauty and diversity of our planet. We are pleased to present the winning selections of the editorial board of the journal and guest judge Dr.
View Article and Find Full Text PDFBackground: Addressing genetic issues in the management of fragmented wild populations of threatened species is one of the most important challenges in conservation biology. Nowadays, a diverse array of molecular methods exists to assess genetic diversity and differentiation of wild populations such as allozymes, dominant markers and co-dominant markers. However it remains worthwhile i) to compare the genetic estimates obtained using those several markers in order to ii) test their relative utility, reliability and relevance and iii) the impact of these results for the design of species-specific conservation measures.
View Article and Find Full Text PDFBMC Ecology showcases the winning entries from its second Ecology Image Competition. More than 300 individual images were submitted from an international array of research scientists, depicting life on every continent on earth. The journal's Editorial Board and guest judge Caspar Henderson outline why their winning selections demonstrated high levels of technical skill and aesthetic sense in depicting the science of ecology, and we also highlight a small selection of highly commended images that we simply couldn't let you miss out on.
View Article and Find Full Text PDFDispersal, the behaviour ensuring gene flow, tends to covary with a number of morphological, ecological and behavioural traits. While species-specific dispersal behaviours are the product of each species' unique evolutionary history, there may be distinct interspecific patterns of covariation between dispersal and other traits ('dispersal syndromes') due to their shared evolutionary history or shared environments. Using dispersal, phylogeny and trait data for 15 terrestrial and semi-terrestrial animal Orders (> 700 species), we tested for the existence and consistency of dispersal syndromes across species.
View Article and Find Full Text PDFThe large white butterfly, Pieris brassicae, shows a seasonal polyphenism of wing melanisation, spring individuals being darker than summer individuals. This phenotypic plasticity is supposed to be an adaptive response for thermoregulation in natural populations. However, the variation in individuals' response, the cause of this variation (genetic, non genetic but inheritable or environmental) and its relationship with fitness remain poorly known.
View Article and Find Full Text PDFDue to its impact on local adaptation, population functioning or range shifts, dispersal is considered a central process for population persistence and species evolution. However, measuring dispersal is complicated, which justifies the use of dispersal proxies. Although appealing, and despite its general relationship with dispersal, body size has however proven unsatisfactory as a dispersal proxy.
View Article and Find Full Text PDFFlight direction is a major component of an animal's migratory success. However, few studies have focused on variation in flight direction both between and within individuals, which is likely to be correlated with other traits implied in migration processes. We report patterns of intra- and inter-individual variation in flight direction in the large white butterfly Pieris brassicae.
View Article and Find Full Text PDF1. Sex-biased dispersal, that is, the difference in dispersal between males and females, is thought to be the consequence of any divergent evolutionary responses between sexes. In anisogamous species, asymmetry in parental investment may lead to sexual conflict, which entails male-male competition (for sexual partner access), female-female competition (for feeding or egg-laying habitat patches) and/or male-female competition (antagonistic co-evolution).
View Article and Find Full Text PDF