Publications by authors named "Michel Arthur"

Continuous use of antibiotics leads to the ability of bacteria to adapt by developing complex antibiotic resistance (AR) mechanisms. The synthesis of β-lactamases is a widely observed AR mechanism. The class C β-lactamase (AmpC) causes significant resistance toward β-lactam antibiotics, and new treatments are urgently needed.

View Article and Find Full Text PDF
Article Synopsis
  • Peptidoglycan (PG) is a strong net-like structure that surrounds bacteria, keeping them safe from bursting in watery environments.
  • Scientists created a special method using heavy isotopes and mass spectrometry to learn how new parts are added to this PG structure during bacterial growth.
  • Their findings reveal that the protein Braun lipoprotein (Lpp) is added to PG and that it moves around a lot, sometimes being attached and other times being free within the bacterial wall.
View Article and Find Full Text PDF

Objectives: Mycobacterium abscessus has emerged as an opportunistic pathogen responsible for lung infections, especially in cystic fibrosis patients. In spite of the production of the broad-spectrum β-lactamase BlaMab, the carbapenem imipenem is recommended in the initial phase of the treatment of pulmonary infections. Here, we determine whether the addition of vaborbactam, a second-generation β-lactamase inhibitor belonging to the boronate family, improves the activity of β-lactams against M.

View Article and Find Full Text PDF

The rapid spread of antimicrobial resistance across bacterial pathogens poses a serious risk to the efficacy and sustainability of available treatments. This puts pressure on research concerning the development of new drugs. Here, we present an in-cell NMR-based research strategy to monitor the activity of the enzymes located in the periplasmic space delineated by the inner and outer membranes of Gram-negative bacteria.

View Article and Find Full Text PDF

(p)ppGpp is a nucleotide alarmone that controls bacterial response to nutrient deprivation. Since elevated (p)ppGpp levels confer mecillinam resistance and are essential for broad-spectrum β-lactam resistance as mediated by the β-lactam-insensitive transpeptidase YcbB (LdtD), we hypothesized that (p)ppGpp might affect cell wall peptidoglycan metabolism. Here we report that (p)ppGpp-dependent β-lactam resistance does not rely on any modification of peptidoglycan metabolism, as established by analysis of Escherichia coli peptidoglycan structure using high-resolution mass spectrometry.

View Article and Find Full Text PDF

Penicillin-binding proteins (PBPs) are essential for the formation of the bacterial cell wall. They are also the targets of β-lactam antibiotics. In Enterococcus faecium, high levels of resistance to β-lactams are associated with the expression of PBP5, with higher levels of resistance associated with distinct PBP5 variants.

View Article and Find Full Text PDF
Article Synopsis
  • - Peptidoglycan is a key element in bacterial cell structure, helping maintain pressure, shape, and providing a framework for other molecules like lipoproteins.
  • - The study focused on three l,d-transpeptidases (LDTs) in Pseudomonas aeruginosa, revealing their roles in peptidoglycan cross-linking, anchoring lipoproteins, and breaking down cross-linked connections, particularly in biofilm conditions.
  • - The research showed that LDTs are crucial for the stability of the bacterial cell envelope, essential for biofilm growth, and their deletion reduces biofilm formation while increasing susceptibility to antibacterial agents like EDTA.
View Article and Find Full Text PDF

Cell wall glycopolymers (CWPGs) in Gram-positive bacteria have been reported to be involved in several bacterial processes. These polymers, pillars for proteins and S-layer, are essential for the bacterial surface setup, could be essential for growth, and, in pathogens, participate most often in virulence. CWGPs are covalently anchored to peptidoglycan by proteins that belong to the LytR-CpsA-PSr (LCP) family.

View Article and Find Full Text PDF

Ruthenium(II) alkyne azide cycloaddition (RuAAC) is an attractive reaction to access 1,5-triazole derivatives and is applicable to internal alkynes. Here, we explore RuAAC to introduce molecular diversity on the diazabicyclooctane (DBO) scaffold of β-lactamase inhibitors. The methodology presented is fully regioselective and enabled synthesis of a series of 1,5-triazole DBOs and trisubstituted analogues.

View Article and Find Full Text PDF

Ampicillin-ceftriaxone has become a first-line therapy for Enterococcus faecalis endocarditis. We characterized the penicillin-binding protein (PBP) profiles of various E. faecalis strains and tested for synergy to better inform beta-lactam options for the treatment of E.

View Article and Find Full Text PDF

The D,D-transpeptidase activity of penicillin-binding proteins (PBPs) is the well-known primary target of β-lactam antibiotics that block peptidoglycan polymerization. β-lactam-induced bacterial killing involves complex downstream responses whose causes and consequences are difficult to resolve. Here, we use the functional replacement of PBPs by a β-lactam-insensitive L,D-transpeptidase to identify genes essential to mitigate the effects of PBP inactivation by β-lactams in actively dividing bacteria.

View Article and Find Full Text PDF

Treatment of multidrug-resistant tuberculosis with combinations of carbapenems and β-lactamase inhibitors carries risks for dysbiosis and for the development of resistances in the intestinal microbiota. Using Escherichia coli producing carbapenemase KPC-2 as a model, we show that carbapenems can be modified to obtain drugs that are inactive against E. coli but retain antitubercular activity.

View Article and Find Full Text PDF

Antibiotics of the β-lactam (penicillin) family inactivate target enzymes called D,D-transpeptidases or penicillin-binding proteins (PBPs) that catalyze the last cross-linking step of peptidoglycan synthesis. The resulting net-like macromolecule is the essential component of bacterial cell walls that sustains the osmotic pressure of the cytoplasm. In , bypass of PBPs by the YcbB L,D-transpeptidase leads to resistance to these drugs.

View Article and Find Full Text PDF

We explored the traceless Staudinger ligation for the functionalization of the C2 position of second generation β-lactamase inhibitors based on a diazabicyclooctane (DBO) scaffold. Our strategy is based on the synthesis of phosphine phenol esters and their ligation to an azido-containing precursor. Biological evaluation showed that this route provided access to a DBO that proved to be superior to commercial relebactam for inhibition of two of the five β-lactamases that were tested.

View Article and Find Full Text PDF

Bacteria resist to the turgor pressure of the cytoplasm through a net-like macromolecule, the peptidoglycan, made of glycan strands connected via peptides cross-linked by penicillin-binding proteins (PBPs). We recently reported the emergence of β-lactam resistance resulting from a bypass of PBPs by the YcbB L,D-transpeptidase (LdtD), which form chemically distinct 3→3 cross-links compared to 4→3 formed by PBPs. Here we show that peptidoglycan expansion requires controlled hydrolysis of cross-links and identify among eight endopeptidase paralogues the minimum enzyme complements essential for bacterial growth with 4→3 (MepM) and 3→3 (MepM and MepK) cross-links.

View Article and Find Full Text PDF

β-Lactams, the cornerstone of antibiotherapy, inhibit multiple and partially redundant targets referred to as transpeptidases or penicillin-binding proteins. These enzymes catalyze the essential cross-linking step of the polymerization of cell wall peptidoglycan. The understanding of the mechanisms of action of β-lactams and of resistance to these drugs requires the development of reliable methods to characterize their targets.

View Article and Find Full Text PDF

Staudinger ligation is an attractive bioorthogonal reaction for use in studying biomolecules due to its capacity to form a native amide bond between a tag and a biomolecule. Here, we explore the traceless variant of the Staudinger ligation for 3'-end modification of oligoribonucleotides. The procedure involves (i) synthesis of phosphine-containing reactive groups, affinity purification tags, or photoactivatable benzophenone probe, (ii) synthesis of 2'-azido dinucleotides and 24-nt RNA, and (iii) traceless Staudinger ligation experiments.

View Article and Find Full Text PDF

The sequence of tRNAs is submitted to evolutionary constraints imposed by their multiple interactions with aminoacyl-tRNA synthetases, translation elongation factor Tu in complex with GTP (EF-Tu•GTP), and the ribosome, each being essential for accurate and effective decoding of messenger RNAs. In Staphylococcus aureus, an additional constraint is imposed by the participation of tRNAGly isoacceptors in the addition of a pentaglycine side chain to cell-wall peptidoglycan precursors by transferases FmhB, FemA and FemB. Three tRNAGly isoacceptors poorly interacting with EF-Tu•GTP and the ribosome were previously identified.

View Article and Find Full Text PDF

The carbapenem class of β-lactams has been optimized against Gram-negative bacteria producing extended-spectrum β-lactamases by introducing substituents at position C2. Carbapenems are currently investigated for the treatment of tuberculosis as these drugs are potent covalent inhibitors of l,d-transpeptidases involved in mycobacterial cell wall assembly. The optimization of carbapenems for inactivation of these unusual targets is sought herein by exploiting the nucleophilicity of the C8 hydroxyl group to introduce chemical diversity.

View Article and Find Full Text PDF

Staudinger ligation is an attractive bio-orthogonal reaction that has been widely used to tag proteins, carbohydrates, and nucleic acids. Here, we explore the traceless variant of the Staudinger ligation for 3'-end modification of oligoribonucleotides. An azido-containing dinucleotide was used to study the ligation.

View Article and Find Full Text PDF

As β-lactams are reconsidered for the treatment of tuberculosis (TB), their targets are assumed to be peptidoglycan transpeptidases, as verified by adduct formation and kinetic inhibition of (Mtb) transpeptidases by carbapenems active against replicating Mtb. Here, we investigated the targets of recently described cephalosporins that are selectively active against non-replicating (NR) Mtb. NR-active cephalosporins failed to inhibit recombinant Mtb transpeptidases.

View Article and Find Full Text PDF

Chromosomal and plasmid-borne AmpC cephalosporinases are a major resistance mechanism to β-lactams in and The new β-lactamase inhibitor avibactam effectively inhibits class C enzymes and can fully restore ceftazidime susceptibility. The conserved amino acid residue Asn of AmpC cephalosporinases directly interacts with the avibactam sulfonate. Disruption of this interaction caused by the NY amino acid substitution in AmpC was previously shown to confer resistance to the ceftazidime-avibactam combination (CAZ-AVI).

View Article and Find Full Text PDF

Second-generation β-lactamase inhibitors containing a diazabicyclooctane (DBO) scaffold restore the activity of β-lactams against pathogenic bacteria, including those producing class A, C, and D enzymes that are not susceptible to first-generation inhibitors containing a β-lactam ring. Here, we report optimization of a synthetic route to access triazole-containing DBOs and biological evaluation of a series of 17 compounds for inhibition of five β-lactamases representative of enzymes found in pathogenic Gram-negative bacteria. A strong correlation (Spearman coefficient of 0.

View Article and Find Full Text PDF

, one of the most frequent pathogenic species responsible for nocardiosis, is characterized by frequent brain involvement and resistance to β-lactams mediated by a class A β-lactamase. Kinetic parameters for hydrolysis of various β-lactams by FAR from strain IFM 10152 were determined by spectrophotometry revealing a high catalytic activity (/ ) for amoxicillin, aztreonam, and nitrocefin. For cephems, / was lower but remained greater than 10 M s A low catalytic activity was observed for meropenem, imipenem, and ceftazidime hydrolysis.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: