Publications by authors named "Michel Abou-Samra"

Adiponectin (ApN) is a hormone with potent effects on various tissues. We previously demonstrated its ability to counteract Duchenne muscular dystrophy (DMD), a severe muscle disorder. However, its therapeutic use is limited.

View Article and Find Full Text PDF

Sarcopenia, characterized by loss of muscle mass, quality, and function, poses significant risks in aging. We previously demonstrated that long-term treatment with AdipoRon (AR), an adiponectin receptor agonist, alleviated myosteatosis and muscle degeneration in middle-aged obese mice. This study aimed to determine if a shorter AR treatment could effectively offset sarcopenia in older mice.

View Article and Find Full Text PDF

Background: Cancer cachexia is a life-threatening, inflammation-driven wasting syndrome that remains untreatable. Adiponectin, the most abundant adipokine, plays an important role in several metabolic processes as well as in inflammation modulation. Our aim was to test whether administration of AdipoRon (AR), a synthetic agonist of the adiponectin receptors, prevents the development of cancer cachexia and its related muscle atrophy.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is one of the most devastating myopathies, where severe inflammation exacerbates disease progression. Previously, we demonstrated that adiponectin (ApN), a hormone with powerful pleiotropic effects, can efficiently improve the dystrophic phenotype. However, its practical therapeutic application is limited.

View Article and Find Full Text PDF

Background: Duchenne muscular dystrophy (DMD) is the most common inherited human myopathy. Typically, the secondary process involving severe inflammation and necrosis exacerbate disease progression. Previously, we reported that the NLRP3 inflammasome complex plays a crucial role in this disorder.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a progressive disease caused by the loss of function of the protein dystrophin. This protein contributes to the stabilisation of striated cells during contraction, as it anchors the cytoskeleton with components of the extracellular matrix through the dystrophin-associated protein complex (DAPC). Moreover, absence of the functional protein affects the expression and function of proteins within the DAPC, leading to molecular events responsible for myofibre damage, muscle weakening, disability and, eventually, premature death.

View Article and Find Full Text PDF

Background: Obesity among older adults has increased tremendously. Obesity accelerates ageing and predisposes to age-related conditions and diseases, such as loss of endurance capacity, insulin resistance and features of the metabolic syndrome. Namely, ectopic lipids play a key role in the development of nonalcoholic fatty liver disease (NAFLD) and myosteatosis, two severe burdens of ageing and metabolic diseases.

View Article and Find Full Text PDF

Over the last decade, innate immune system receptors and sensors called inflammasomes have been identified to play key pathological roles in the development and progression of numerous diseases. Among them, the nucleotide-binding oligomerization domain (NOD-), leucine-rich repeat (LRR-) and pyrin domain-containing protein 3 (NLRP3) inflammasome is probably the best characterized. To date, NLRP3 has been extensively studied in the heart, where its effects and actions have been broadly documented in numerous cardiovascular diseases.

View Article and Find Full Text PDF

Adiponectin (ApN) is a hormone abundantly secreted by adipocytes and it is known to be tightly linked to the metabolic syndrome. It promotes insulin-sensitizing, fat-burning, and anti-atherosclerotic actions, thereby effectively counteracting several metabolic disorders, including type 2 diabetes, obesity, and cardiovascular diseases. ApN is also known today to possess powerful anti-inflammatory/oxidative and pro-myogenic effects on skeletal muscles exposed to acute or chronic inflammation and injury, mainly through AdipoR1 (ApN specific muscle receptor) and AMP-activated protein kinase (AMPK) pathway, but also via T-cadherin.

View Article and Find Full Text PDF

Background: Adiponectin (ApN) is a hormone known to exhibit insulin-sensitizing, fat-burning, and anti-inflammatory properties in several tissues, including the skeletal muscle. Duchenne muscular dystrophy (DMD) is a devastating disease characterized by dystrophin deficiency with subsequent chronic inflammation, myofiber necrosis, and impaired regeneration. Previously, we showed that transgenic up-regulation of ApN could significantly attenuate the dystrophic phenotype in mdx mice (model of DMD).

View Article and Find Full Text PDF

Aims/hypothesis: The mechanisms responsible for beta cell compensation in obesity and for beta cell failure in type 2 diabetes are poorly defined. The mRNA levels of several metallothionein (MT) genes are upregulated in islets from individuals with type 2 diabetes, but their role in beta cells is not clear. Here we examined: (1) the temporal changes of islet Mt1 and Mt2 gene expression in mouse models of beta cell compensation and failure; and (2) the role of Mt1 and Mt2 in beta cell function and glucose homeostasis in mice.

View Article and Find Full Text PDF

Background: The hormone adiponectin (ApN) exerts powerful anti-inflammatory effects on skeletal muscle and can reverse devastating myopathies, like Duchenne muscular dystrophy (DMD), where inflammation exacerbates disease progression. The NLRP3 inflammasome plays a key role in the inflammation process, and its aberrant activation leads to several inflammatory or immune diseases. Here we investigated the expression of the NLRP inflammasome in skeletal muscle and its contribution to DMD.

View Article and Find Full Text PDF

Adiponectin (ApN) is a hormone that exhibits anti-inflammatory effects on skeletal muscle exposed to acute and chronic inflammation. We have previously tested the implication of ApN in Duchenne muscular dystrophy (DMD) using mdx mice, a model of DMD, and by generating transgenic mdx mice overexpressing ApN. We showed that ApN can act as a preventive agent and delay disease progression by reducing muscle inflammation/injury and improving force/myogenesis.

View Article and Find Full Text PDF

Muscle inflammation worsens metabolic disorders as well as devastating myopathies. The hormone adiponectin (ApN) has emerged has a master regulator of inflammation/immunity in several tissues including the skeletal muscle. In this work, we explore whether microRNAs regulated by ApN may represent novel mechanisms for controlling muscle inflammation.

View Article and Find Full Text PDF

Background: The hormone adiponectin (ApN) is decreased in the metabolic syndrome, where it plays a key pathogenic role. ApN also exerts some anti-inflammatory effects on skeletal muscles in mice exposed to acute or chronic inflammation. Here, we investigate whether ApN could be sufficiently potent to counteract a severe degenerative muscle disease, with an inflammatory component such as Duchenne muscular dystrophy (DMD).

View Article and Find Full Text PDF

Upregulation of muscular adiponectin could act as a local protective mechanism to counteract cellular damage in obesity by weakening inflammation, oxidative stress, and apoptosis. To test this hypothesis, adiponectin-knockout (KO) and wild-type (WT) mice were fed a Western diet (WD). WT mice under WD conditions displayed 63% higher adiponectin expression in myocytes than those under standard laboratory diet (SLD) conditions (P = 0.

View Article and Find Full Text PDF

We previously found that the NF-κB transcription factor is activated during the recovery period after heat shock; moreover, we demonstrated that NF-κB is essential for cell survival after heat shock by activating autophagy, a mechanism that probably helps the cell to cope with hyperthermic stress through clearance of damaged proteins. In this study, we analyze the involvement of NF-κB in basal and heat-stress-induced protein quality control, by comparing the level of multiubiquitylated and/or aggregated proteins, and proteasome and autophagic activity in NF-κB-competent and NF-κB-incompetent cells. We show that NF-κB has only a minor role in basal protein quality control, where it modulates autophagosome maturation.

View Article and Find Full Text PDF