Surrogate markers have enormous potential for contributing to the diagnosis, prognosis, and therapeutic evaluation of acute brain damage, but extensive prior study of individual candidates has not yielded a biomarker in widespread clinical practice. We hypothesize that a panel of neuron-enriched proteins measurable in cerebrospinal fluid (CSF) and blood should vastly improve clinical evaluation and therapeutic management of acute brain injuries. Previously, we developed such a panel based initially on the study of protein release from degenerating cultured neurons, and subsequently on rodent models of traumatic brain injury (TBI) and ischemia, consisting of 14-3-3beta, 14-3-3zeta, three distinct phosphoforms of neurofilament H, ubiquitin hydrolase L1, neuron-specific enolase, alpha-spectrin, and three calpain- and caspase-derived fragments of alpha-spectrin.
View Article and Find Full Text PDF