Publications by authors named "Michaux C"

Potassium (K) is an essential physiological element determining membrane potential, intracellular pH, osmotic/turgor pressure, and protein synthesis in cells. Here, we describe the regulation of potassium uptake systems in the oligotrophic α-proteobacterium known as a model for asymmetric cell division. We show that can grow in concentrations from the micromolar to the millimolar range by mainly using two K transporters to maintain potassium homeostasis, the low-affinity Kup and the high-affinity Kdp uptake systems.

View Article and Find Full Text PDF

Tuftelin Interacting Protein 11 (TFIP11) was identified as a critical human spliceosome assembly regulator, interacting with multiple proteins and localising in membrane-less organelles. However, a lack of structural information on TFIP11 limits the rationalisation of its biological role. TFIP11 is predicted as an intrinsically disordered protein (IDP), and more specifically concerning its N-terminal (N-TER) region.

View Article and Find Full Text PDF

DPF3, along with other subunits, is a well-known component of the BAF chromatin remodeling complex, which plays a key role in regulating chromatin remodeling activity and gene expression. Here, we elucidated a non-canonical localization and role for DPF3. We showed that DPF3 dynamically localizes to the centriolar satellites in interphase and to the centrosome, spindle midzone and bridging fiber area, and midbodies during mitosis.

View Article and Find Full Text PDF

Insect trehalases have been identified as promising new targets for pest control. These key enzymes are involved in trehalose hydrolysis and plays an important role in insect growth and development. In this contribution, plant and microbial compounds, namely validamycin A, amygdalin, and phloridzin, were evaluated for their effect, through trehalase inhibition, on Acyrthosiphon pisum aphid.

View Article and Find Full Text PDF

RNA decay is a crucial mechanism for regulating gene expression in response to environmental stresses. In bacteria, RNA-binding proteins (RBPs) are known to be involved in posttranscriptional regulation, but their global impact on RNA half-lives has not been extensively studied. To shed light on the role of the major RBPs ProQ and CspC/E in maintaining RNA stability, we performed RNA sequencing of over a time course following treatment with the transcription initiation inhibitor rifampicin (RIF-seq) in the presence and absence of these RBPs.

View Article and Find Full Text PDF
Article Synopsis
  • DPF3 protein has two splicing variants, DPF3b and DPF3a, linked to human cancer and neurodegeneration, and both can form amyloid fibrils that exhibit a unique deep-blue autofluorescence.
  • The study explored how changing pH and excitation wavelength affects the autofluorescence of these isoforms, revealing different emission modes (violet, deep-blue, and blue-green) and unique photophysical behaviors for each variant.
  • This research suggests that variations in autofluorescence and the structural differences in fibrillar assemblies of DPF3b and DPF3a are influenced by their amino acid compositions and pH-induced changes in molecular interactions.
View Article and Find Full Text PDF
Article Synopsis
  • The host environment significantly affects how effective antibiotics are, especially during infections caused by resistant bacteria known as persisters.
  • These persisters can temporarily evade the effects of antibiotics, contributing to treatment failures and recurrent infections.
  • Recent research found that reactive nitrogen species (RNS) in the host not only protect persisters from certain antibiotics but also make them more vulnerable to others, like fluoroquinolones, by disrupting their ability to expel these drugs.
View Article and Find Full Text PDF

Chemotaxis is a widespread strategy used by unicellular and multicellular living organisms to maintain their fitness in stressful environments. We previously showed that bacteria can trigger a negative chemotactic response to a copper (Cu)-rich environment. Cu ion toxicity on bacterial cell physiology has been mainly linked to mismetallation events and reactive oxygen species (ROS) production, although the precise role of Cu-generated ROS remains largely debated.

View Article and Find Full Text PDF

Internalization of pathogenic bacteria by macrophages results in formation of antibiotic-tolerant persisters. These cells are maintained in a non-growing state for extended periods of time, and it is assumed that their growth resumption causes infection relapse after cessation of antibiotic treatment. Despite this clinical relevance, the signals and conditions that drive persister regrowth during infection are not yet understood.

View Article and Find Full Text PDF

and are major nosocomial pathogens. Despite their relevance to public health and their role in the development of bacterial antibiotic resistance, relatively little is known about gene regulation in these species. RNA-protein complexes serve crucial functions in all cellular processes associated with gene expression, including post-transcriptional control mediated by small regulatory RNAs (sRNAs).

View Article and Find Full Text PDF

The Enterobacter cloacae complex (ECC) has become a major opportunistic pathogen with antimicrobial resistance issues. Temocillin, an "old" carboxypenicillin that is remarkably stable toward β-lactamases, has been used as an alternative for the treatment of multidrug-resistant ECC infections. Here, we aimed at deciphering the never-investigated mechanisms of temocillin resistance acquisition in .

View Article and Find Full Text PDF
Article Synopsis
  • - Diabetic foot ulcers are a common complication of diabetes, and malnutrition is a key risk factor that can also result from these ulcers.
  • - A study found that malnutrition at the time of hospital admission was linked to longer hospital stays and higher death rates, but not necessarily to an increased risk of amputation.
  • - The findings suggest that while protein-energy deficiency doesn’t worsen the outcomes of diabetic foot ulcers, monitoring nutritional status is crucial to provide timely support and reduce related health risks.
View Article and Find Full Text PDF

Double-PHD fingers 3 (DPF3) is a BAF-associated human epigenetic regulator, which is increasingly recognised as a major contributor to various pathological contexts, such as cardiac defects, cancer, and neurodegenerative diseases. Recently, we unveiled that its two isoforms (DPF3b and DPF3a) are amyloidogenic intrinsically disordered proteins. DPF3 isoforms differ from their C-terminal region (C-TERb and C-TERa), containing zinc fingers and disordered domains.

View Article and Find Full Text PDF

Bacterial populations can survive exposure to antibiotics through transient phenotypic and gene expression changes. These changes can be attributed to a small subpopulation of bacteria, giving rise to antibiotic persistence. Although this phenomenon has been known for decades, much remains to be learned about the mechanisms that drive persister formation.

View Article and Find Full Text PDF

Genetically susceptible bacteria can escape the action of bactericidal antibiotics through antibiotic tolerance or persistence. However, one major difference between the two phenomena is their distinct penetrance within an isogenic population. While with antibiotic persistence, susceptible and persister cells co-exist, antibiotic tolerance affects the entire bacterial population.

View Article and Find Full Text PDF

Copper cations play fundamental roles in biological systems, such as protein folding and stabilization, or enzymatic reactions. Although copper is essential to the cell, it can become cytotoxic if present in too high concentration. Organisms have therefore developed specific regulation mechanisms towards copper.

View Article and Find Full Text PDF

Double PHD fingers 3 (DPF3) is a zinc finger protein, found in the BAF chromatin remodelling complex, and is involved in the regulation of gene expression. Two DPF3 isoforms have been identified, respectively named DPF3b and DPF3a. Very limited structural information is available for these isoforms, and their specific functionality still remains poorly studied.

View Article and Find Full Text PDF

The RNA chaperones, cold shock proteins CspC and CspE, are important in stress response and adaptation. We studied their role in the pathogenesis of a virulent Escherichia coli, representative of extraintestinal pathogenic E. coli (ExPEC) which are serum resistant and septicemic.

View Article and Find Full Text PDF

Insect trehalases are glycoside hydrolases essential for trehalose metabolism and stress resistance. We here report the extraction and purification of Acyrthosiphon pisum soluble trehalase (ApTreh-1), its biochemical and structural characterization, as well as the determination of its kinetic properties. The protein has been purified by ammonium sulphate precipitation, first followed by an anion-exchange and then by an affinity chromatography.

View Article and Find Full Text PDF

The U6 snRNA, the core catalytic component of the spliceosome, is extensively modified post-transcriptionally, with 2'-O-methylation being most common. However, how U6 2'-O-methylation is regulated remains largely unknown. Here we report that TFIP11, the human homolog of the yeast spliceosome disassembly factor Ntr1, localizes to nucleoli and Cajal Bodies and is essential for the 2'-O-methylation of U6.

View Article and Find Full Text PDF

This chapter contains the latest version of essential protocols established to study Salmonella persisters during macrophage infection . These methods, which can be applied to other pathogens, allow researchers to quantify, visualize, and characterize bacterial persisters within a population and within immune cells consistent with the recent consensus statement published by the research community working on antibiotic persistence (Balaban et al, Nat Rev Microbiol 17:441-448, 2019). These protocols notably allow the discrimination between tolerance and persistence during infection , which is essential to clarify which phenomenon is actually reported.

View Article and Find Full Text PDF

Double PHD fingers 3 (DPF3) is a human epigenetic factor found in the multiprotein BRG1-associated factor (BAF) chromatin remodeling complex. It has two isoforms: DPF3b and DPF3a, but very little is known about the latter. Despite the lack of structural data, it has been established that DPF3a is involved in various protein-protein interactions and that it is subject to phosphorylation.

View Article and Find Full Text PDF

Hybrid free-standing biomimetic materials are developed by integrating the VDAC36 β-barrel protein into robust and flexible three-layered polymer nanomembranes. The first and third layers are prepared by spin-coating a mixture of poly(lactic acid) (PLA) and poly(vinyl alcohol) (PVA). PVA nanofeatures are transformed into controlled nanoperforations by solvent-etching.

View Article and Find Full Text PDF

We describe four SARS-CoV-2 re-infections with a B.1.351 variant in 2021, in healthcare workers (HCWs) previously infected in 2020, before detection of this variant in Europe.

View Article and Find Full Text PDF