Background: Despite the current therapeutic treatments including surgery, chemotherapy, radiotherapy and more recently immunotherapy, the mortality rate of lung cancer stays high. Regarding lung cancer, epigenetic modifications altering cell cycle, angiogenesis and programmed cancer cell death are therapeutic targets to combine with immunotherapy to improve treatment success. In a recent study, we uncovered that a molecule called QAPHA ((E)-3-(5-((2-cyanoquinolin-4-yl)(methyl)amino)-2-methoxyphenyl)-N-hydroxyacrylamide) has a dual function as both a tubulin polymerization and HDAC inhibitors.
View Article and Find Full Text PDFObjectives: Alterations in tryptophan (Trp) metabolism have been reported in inflammatory diseases, including rheumatoid arthritis (RA). However, understanding whether these alterations participate in RA development and can be considered putative therapeutic targets remains undetermined.In this study, we combined quantitative Trp metabolomics in the serum from patients with RA and corrective administration of a recombinant enzyme in experimental arthritis to address this question.
View Article and Find Full Text PDFThe food industry has always used many strains of microorganisms including fungi in their production processes. These strains have been widely characterized for their biotechnological value, but we still know very little about their interaction capacities with the host at a time when the intestinal microbiota is at the center of many pathologies. In this study, we characterized five yeast strains from food production which allowed us to identify two new strains with high probiotic potential and beneficial effects in a model of intestinal inflammation.
View Article and Find Full Text PDFIntroduction: Antibiotic effects on gut bacteria have been widely studied, but very little is known about the consequences of such treatments on the mycobiota, the fungal part of the microbiota and how the length of administration influences both microbiota. Here, we examined the effect of antibiotics (ATB) on the composition of bacterial and fungal microbiota and how the administration of CNCM I-745 influences both microbiota.
Methods: In order to get closer to the human microbiota, the mice used in this study were subjected to fecal microbiota transfer (FMT) using human feces and subsequently called human microbiotaassociated (HMA) mice.
Background: Effects of antibiotics on gut bacteria have been widely studied, but very little is known about the consequences of such treatments on the fungal microbiota (mycobiota). It is commonly believed that fungal load increases in the gastrointestinal tract following antibiotic treatment, but better characterization is clearly needed of how antibiotics directly or indirectly affect the mycobiota and thus the entire microbiota.
Design: We used samples from humans (infant cohort) and mice (conventional and human microbiota-associated mice) to study the consequences of antibiotic treatment (amoxicillin-clavulanic acid) on the intestinal microbiota.
Objective: The extent to which tryptophan (Trp) metabolism alterations explain or influence the outcome of inflammatory bowel diseases (IBDs) is still unclear. However, several Trp metabolism end-products are essential to intestinal homeostasis. Here, we investigated the role of metabolites from the kynurenine pathway.
View Article and Find Full Text PDFObjectives: Inflammatory bowel disease (IBD) results from a combination of genetic predisposition, dysbiosis of the gut microbiota and environmental factors, leading to alterations in the gastrointestinal immune response and chronic inflammation. Caspase recruitment domain 9 (), one of the IBD susceptibility genes, has been shown to protect against intestinal inflammation and fungal infection. However, the cell types and mechanisms involved in the CARD9 protective role against inflammation remain unknown.
View Article and Find Full Text PDFFood processes use different microorganisms, from bacteria to fungi. Yeast strains have been extensively studied, especially Saccharomyces cerevisiae. However, to date, very little is known about the potential beneficial effects of molds on gut health as part of gut microbiota.
View Article and Find Full Text PDFBackground: Innate immunity genes have been reported to affect susceptibility to inflammatory bowel diseases (IBDs) and colitis in mice. Dectin-1, a receptor for fungal cell wall β-glucans, has been clearly implicated in gut microbiota modulation and modification of the susceptibility to gut inflammation. Here, we explored the role of Dectin-1 and Dectin-2 (another receptor for fungal cell wall molecules) deficiency in intestinal inflammation.
View Article and Find Full Text PDFGut interleukin-17A (IL-17)-producing γδ T cells are tissue-resident cells that are involved in both host defense and regulation of intestinal inflammation. However, factors that regulate their functions are poorly understood. In this study, we find that the gut microbiota represses IL-17 production by cecal γδ T cells.
View Article and Find Full Text PDFThe gut microbiota is implicated in immune system functions. Regulation of the metabolic processes occurring in immune cells is crucial for the maintenance of homeostasis and immunopathogenesis. Emerging data demonstrate that the gut microbiota is an actor in immunometabolism, notably through the effect of metabolites such as short-chain fatty acids, bile acids, and tryptophan metabolites.
View Article and Find Full Text PDFAirborne ozone exposure causes severe lung injury and inflammation. The aryl hydrocarbon Receptor (AhR) (1), activated in pollutant-induced inflammation, is critical for cytokine production, especially IL-22 and IL-17A. The role of AhR in ozone-induced lung inflammation is unknown.
View Article and Find Full Text PDFThe original version of this Article omitted the author Dr Mathias Chamaillard from the l'Institut de Pasteur, Lille, France. This has been corrected in both the PDF and HTML versions of the Article.
View Article and Find Full Text PDFThe extent to which microbiota alterations define or influence the outcome of metabolic diseases is still unclear, but the byproducts of microbiota metabolism are known to have an important role in mediating the host-microbiota interaction. Here, we identify that in both pre-clinical and clinical settings, metabolic syndrome is associated with the reduced capacity of the microbiota to metabolize tryptophan into derivatives that are able to activate the aryl hydrocarbon receptor. This alteration is not merely an effect of the disease as supplementation with AhR agonist or a Lactobacillus strain, with a high AhR ligand-production capacity, leads to improvement of both dietary- and genetic-induced metabolic impairments, particularly glucose dysmetabolism and liver steatosis, through improvement of intestinal barrier function and secretion of the incretin hormone GLP-1.
View Article and Find Full Text PDFEnvironmental air pollutants including ozone cause severe lung injury and aggravate respiratory diseases such as asthma and COPD. Here we compared the effect of ozone on respiratory epithelium injury, inflammation, hyperreactivity and airway remodeling in mice upon acute (1ppm, 1 h) and chronic exposure (1.5ppm, 2 h, twice weekly for 6 weeks).
View Article and Find Full Text PDFAir pollution associated with ozone exposure represents a major inducer of respiratory disease in man. In mice, a single ozone exposure causes lung injury with disruption of the respiratory barrier and inflammation. We investigated the role of interleukin-1 (IL-1)-associated cytokines upon a single ozone exposure (1 ppm for 1 h) using IL-1α-, IL-1β-, and IL-18-deficient mice or an anti-IL-1α neutralizing antibody underlying the rapid epithelial cell death.
View Article and Find Full Text PDFUpon oral infection with Toxoplasma gondii cysts (76 K strain) tachyzoites are released into the intestinal lumen and cross the epithelial barrier causing damage and acute intestinal inflammation in C57BL/6 (B6) mice. Here we investigated the role of microbiota and IL-22 in T.gondii-induced small intestinal inflammation.
View Article and Find Full Text PDFBackground: IL-33 plays a critical role in regulation of tissue homeostasis, injury, and repair. Whether IL-33 regulates neutrophil recruitment and functions independently of airways hyperresponsiveness (AHR) in the setting of ozone-induced lung injury and inflammation is unclear.
Objective: We sought to examine the role of the IL-33/ST2 axis in lung inflammation on acute ozone exposure in mice.
Reactive oxygen species (ROS) are generated by virus-infected cells; however, the physiological importance of ROS generated under these conditions is unclear. Here we found that the inflammation and cell death induced by exposure of mice or cells to sources of ROS were not altered in the absence of canonical ROS-sensing pathways or known cell-death pathways. ROS-induced cell-death signaling involved interactions among the cellular ROS sensor and antioxidant factor KEAP1, the phosphatase PGAM5 and the proapoptotic factor AIFM1.
View Article and Find Full Text PDFExposure to ambient ozone causes airway hyperreactivity and lung inflammation, which represent an important health concern in humans. Recent clinical and experimental studies contributed to the understanding of the mechanisms of epithelial injury, inflammation and airway hyperreactivity, which is reviewed here. The present data suggest that ozone induced oxidative stress causes inflammasome activation with the release of IL-1, other cytokines and proteases driving lung inflammation leading to the destruction of alveolar epithelia with emphysema and respiratory failure.
View Article and Find Full Text PDF