Publications by authors named "Michals-Matalon K"

Sapropterin dihydrochloride, 6-R-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4) is being introduced in the US for treatment of phenylketonuria (PKU). This compound has been in use in Europe to treat mild forms of PKU. Tetrahydrobiopterin is the cofactor in the hydroxylation reaction of the three aromatic amino acids phenylalanine, tyrosine and tryptophan.

View Article and Find Full Text PDF

Tetrahydrobiopterin (BH4) is a co-factor that enhances the activity of other enzymes, and this co-factor level is found to be affected in phenylketonuria (PKU), an amino acid metabolism disorder. The present study was aimed at understanding the effect of BH4 on mutations in the regulatory domain of phenylalanine hydroxylase (PAH). Among 14 patients, 5 patients were classical PKU, 3 were atypical PKU, and 6 were mild PKU.

View Article and Find Full Text PDF

A favorable response, indicated by decline of blood phenylalanine (Phe) in patients with phenylketonuria (PKU), to orally administered 6-R-L-erythro-5, 6, 7, 8-tetrahydrobiopterin (BH4) has been reported in many countries following the first publication in 1999. In this review, we describe the experience in the United States with PKU patients and their response to BH4. A significant response to BH4 is arbitrarily considered as a decrease of 30% or greater of blood Phe concentration 24 h after administration of BH4.

View Article and Find Full Text PDF

Large neutral amino acids (LNAA) have been used on a limited number of patients with phenylketonuria (PKU) with the purpose of decreasing the influx of phenylalanine (Phe) to the brain. In an open-label study using LNAA, a surprising decline of blood Phe concentration was found in patients with PKU in metabolic treatment centres in Russia, the Ukraine, and the United States. To validate the data obtained from this trial, a short-term double-blind placebo control study was done using LNAA in patients with PKU, with the participation of three additional metabolic centres--Milan, Padua and Rio de Janeiro.

View Article and Find Full Text PDF

Pompe disease (glycogen storage disease type II) is a glycogen storage disease caused by a deficiency of the lysosomal enzyme, acid maltase/acid alpha-1,4 glucosidase (GAA). Deficiency of the enzyme leads primarily to intra-lysosomal glycogen accumulation, primarily in cardiac and skeletal muscles, due to the inability of converting glycogen into glucose. Enzyme replacement therapy (ERT) has been applied to replace the deficient enzyme and to restore the lost function.

View Article and Find Full Text PDF

Large neutral amino acids (LNAAs) have been used on a limited number of patients with phenylketonuria (PKU) with the purpose of decreasing the influx of phenylalanine (Phe) to the brain. In earlier studies on mice with PKU (ENU(2)/ENU(2)), LNAAs were given and a surprising decline in blood Phe concentrations was observed. The formula used in the mouse experiment (PreKUnil) lacked lysine.

View Article and Find Full Text PDF

Canavan disease (CD) is an autosomal recessive disorder, characterized by spongy degeneration of the brain. Patients with CD have aspartoacylase (ASPA) deficiency, which results accumulation of N-acetylaspartic acid (NAA) in the brain and elevated excretion of urinary NAA. Clinically, patients with CD have macrocephaly, mental retardation and hypotonia.

View Article and Find Full Text PDF

This study describes gene expression in the fetus hearts obtained from mouse model for phenylketonuria. These hearts have cardiovascular disease (CVD). Therefore genes involved in CVD were examined.

View Article and Find Full Text PDF

Tetrahydrobiopterin (BH4) responsive forms of phenylketonuria (PKU) have been recognized since 1999. Subsequent studies have shown that patients with PKU, especially those with mild mutations, respond with lower blood phenylalanine (Phe) concentrations following oral administration of 6-R-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4). To determine the incidence of BH4 responding PKU patients in the United States and characterize their phenylalanine hydroxylase (PAH) mutations, a study was undertaken at UTMB in Galveston and the Children's Hospital of Los Angeles on 38 patients with PKU.

View Article and Find Full Text PDF
Article Synopsis
  • Analysis of data from children of mothers with maternal phenylketonuria (MPKU) showed a strong link between inadequate maternal metabolic control during pregnancy and lower IQ scores, as assessed by the WISC-R.
  • Among these children, 7.5% were classified as 'outliers,' showing unexpectedly high or low intellectual performance, prompting further investigation into their cases.
  • The study suggests that genetic factors, specifically modifier genes, may exist that could protect some children from negative outcomes despite high maternal phenylalanine levels, indicating a need for further research in this area.
View Article and Find Full Text PDF

Canavan disease (CD) is an autosomal recessive disorder that leads to spongy degeneration in the white matter of the brain. Aspartoacylase (ASPA) synthesizing cells, oligodendrocytes, are lost in CD. Transplantation of neural progenitor cells (NPCs) offers an interesting therapeutic approach for treating neurodegenerative diseases by replacing the lost cells.

View Article and Find Full Text PDF

Aspartoacylase (ASPA)-deficient patients [Canavan disease (CD)] reportedly have increased urinary excretion of N-acetylaspartylglutamate (NAAG), a neuropeptide abundant in the brain. Whether elevated excretion of urinary NAAG is due to ASPA deficiency, resulting in an abnormal level of brain NAAG, is examined using ASPA-deficient mouse brain. The level of NAAG in the knockout mouse brain was similar to that in the wild type.

View Article and Find Full Text PDF

Orexins/hypocretins are recently discovered neuropeptides, synthesized mainly in the lateral hypothalamus of the brain. Orexins regulate various functions including sleep and apetite. We recently reported increased amount of orexin A in the phenylketonuria (PKU) mouse brain.

View Article and Find Full Text PDF

Canavan disease (CD) is an autosomal recessive disorder caused by aspartoacylase deficiency leading to accumulation of N-acetylaspartic acid and spongy degeneration of the brain. The mouse model for CD showed low levels of glutamate and gamma-aminobutyric acid (GABA) in the brain. Whether the low levels of glutamate and GABA observed in the CD mouse brain lead to abnormal production of glutamate-GABA associated enzymes and resulting succinate production is not obvious.

View Article and Find Full Text PDF
Article Synopsis
  • PKU is a genetic disorder caused by mutations in the PAH gene, affecting the enzyme responsible for breaking down phenylalanine, leading to varying severity of symptoms.
  • A pilot study tested the effectiveness of BH4 in patients with different forms of PKU, with 36 participants who received a dose of 10 mg/kg and had their blood levels monitored.
  • Results showed that 58.33% of patients experienced a significant decrease in phenylalanine levels, indicating that many mutations in the PAH gene can respond positively to BH4 treatment, including some previously unidentified mutations.
View Article and Find Full Text PDF

Canavan disease (CD) is an inherited leukodystrophy, caused by aspartoacylase (ASPA) deficiency, and accumulation of N-acetylaspartic acid (NAA) in the brain. The gene for ASPA has been cloned and more than 40 mutations have been described, with two founder mutations among Ashkenazi Jewish patients. Screening of Ashkenazi Jews for these two common mutations revealed a high carrier frequency, approximately 1/40, so that programs for carrier testing are currently in practice.

View Article and Find Full Text PDF

Canavan disease (CD) is an autosomal recessive leukodystrophy characterized by spongy degeneration of the brain. The clinical features of CD are hypotonia, megalencephaly, and mental retardation leading to early death. While aspartoacylase (ASPA) activity increases with age in the wild type mouse brain, there is no ASPA activity in the CD mouse brain.

View Article and Find Full Text PDF

Sanfilippo A syndrome is an autosomal recessive lysosomal storage disease. This disease was reported in the Cayman Islands population with carrier frequency of 1/7 to 1/10 in the West Bay district of Grand Cayman. The carrier testing of Sanfilippo A disease for families at risk was carried out using the thermal characteristics of sulfamidase activity.

View Article and Find Full Text PDF

Four patients from three families with the clinical features of DOOR syndrome (onycho-osteodystrophy, dystrophic thumbs, sensorineural deafness, and increased urinary levels of 2-oxoglutarate) are the subjects of this report. Our report deals with the autosomal recessive form of the disease, wherein the activity of 2-oxoglutarate decarboxylase (E1(0)) in fibroblasts and white blood cells of the patients is decreased. The activity of E1(0) in all patients' fibroblasts and white blood cells was significantly lower compared to the controls.

View Article and Find Full Text PDF

Objective: The purpose of this study was to determine whether nutritional components other than high maternal blood phenylalanine levels (> or = 10 mg/dL) are associated with congenital heart defects in the offspring of women with hyperphenylalaninemia.

Study Design: Of the 414 subjects who had live births, 249 women (60.1%) started diet treatment before 8 weeks of gestation and had nutritional assessments and infant outcome data.

View Article and Find Full Text PDF

Unlabelled: The Maternal Phenylketonuria Study began in 1984 and during the intervening years, 572 pregnancies in hyperphenylalaninemic women and 99 controls and their outcomes have been evaluated. Among hyperphenylalaninemic women who delivered a live infant, only 15.9% were treated and in metabolic control preconceptually, however, another 18.

View Article and Find Full Text PDF

Canavan disease is a severe progressive leukodystrophy characterized by swelling and spongy degeneration of the white matter of the brain. It is an autosomal recessive disease found more frequently among Ashkenazi Jews. The clinical features are those of severe mental retardation with inability to gain developmental milestones.

View Article and Find Full Text PDF

More studies are needed to elucidate the pathophysiology of Canavan disease and how the inability to hydrolyze NAA leads to spongy degeneration. The creation of an animal model would be helpful in the understanding of the disease and the formulation of gene therapy.

View Article and Find Full Text PDF