Biomed Phys Eng Express
January 2024
Numerous methods have been developed for computer-aided diagnosis (CAD) of coronavirus disease-19 (COVID-19), based on chest computed tomography (CT) images. The majority of these methods are based on deep neural networks and often act as "black boxes" that cannot easily gain the trust of medical community, whereas their result is uniformly influenced by all image regions. This work introduces a novel, self-attention-driven method for content-based image retrieval (CBIR) of chest CT images.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
December 2021
Purpose: Vertebrae, intervertebral disc (IVD) and spinal canal (SC) displacements are in the root of several spinal cord pathologies. The localization and boundary extraction of these structures, along with the quantification of their displacements, provide valuable clues for assessing each pathological condition. In this work, we propose a computational method for boundary extraction of vertebrae, IVD and SC in magnetic resonance images (MRI).
View Article and Find Full Text PDFBackground: There is a need for effective computational methods for quantifying the three-dimensional (3-D) spatial distribution, cellular arbor morphologies, and the morphological diversity of brain astrocytes to support quantitative studies of astrocytes in health, injury, and disease.
New Method: Confocal fluorescence microscopy of multiplex-labeled (GFAP, DAPI) brain tissue is used to perform imaging of astrocytes in their tissue context. The proposed computational method identifies the astrocyte cell nuclei, and reconstructs their arbors using a local priority based parallel (LPP) tracing algorithm.
This work introduces a novel framework for unsupervised parameterization of region-based active contour regularization and data fidelity terms, which is applied for medical image segmentation. The work aims to relieve MDs from the laborious, time-consuming task of empirical parameterization and bolster the objectivity of the segmentation results. The proposed framework is inspired by an observed isomorphism between the eigenvalues of structure tensors and active contour parameters.
View Article and Find Full Text PDFA principled method for active contour (AC) parameterization remains a challenging issue in segmentation research, with a potential impact on the quality, objectivity, and robustness of the segmentation results. This paper introduces a novel framework for automated adjustment of region-based AC regularization and data fidelity parameters. Motivated by an isomorphism between the weighting factors of AC energy terms and the eigenvalues of structure tensors, we encode local geometry information by mining the orientation coherence in edge regions.
View Article and Find Full Text PDFIEEE Trans Inf Technol Biomed
July 2011
This paper introduces a novel computer-based technique for automated detection of protein spots in proteomics images. The proposed technique is based on the localization of regional intensity maxima associated with protein spots and is formulated so as to ignore rectangular-shaped streaks, minimize the detection of false negatives, and allow the detection of multiple overlapping spots. Regional intensity constraints are imposed on the localized maxima in order to cope with the presence of noise and artifacts.
View Article and Find Full Text PDFComput Methods Programs Biomed
October 2009
In this paper, a novel computer-based approach is proposed for malignancy risk assessment of thyroid nodules in ultrasound images. The proposed approach is based on boundary features and is motivated by the correlation which has been addressed in medical literature between nodule boundary irregularity and malignancy risk. In addition, local echogenicity variance is utilized so as to incorporate information associated with local echogenicity distribution within nodule boundary neighborhood.
View Article and Find Full Text PDFThyroid nodules are solid or cystic lumps formed in the thyroid gland and may be caused by a variety of thyroid disorders. This paper presents a novel active contour model for precise delineation of thyroid nodules of various shapes according to their echogenicity and texture, as displayed in ultrasound (US) images. The proposed model, named joint echogenicity-texture (JET), is based on a modified Mumford-Shah functional that, in addition to regional image intensity, incorporates statistical texture information encoded by feature distributions.
View Article and Find Full Text PDFThis paper presents a computer-aided approach for nodule delineation in thyroid ultrasound (US) images. The developed algorithm is based on a novel active contour model, named variable background active contour (VBAC), and incorporates the advantages of the level set region-based active contour without edges (ACWE) model, offering noise robustness and the ability to delineate multiple nodules. Unlike the classic active contour models that are sensitive in the presence of intensity inhomogeneities, the proposed VBAC model considers information of variable background regions.
View Article and Find Full Text PDF