Publications by authors named "Michalis Averof"

Animals can regenerate complex organs, yet this process frequently results in imprecise replicas of the original structure. In the crustacean , embryonic and regenerating legs differ in gene expression dynamics but produce apparently similar mature structures. We examine the fidelity of leg regeneration using complementary approaches to investigate microanatomy, sensory function, cellular composition, and cell molecular profiles.

View Article and Find Full Text PDF

Regenerating animals have the ability to reproduce body parts that were originally made in the embryo and subsequently lost due to injury. Understanding whether regeneration mirrors development is an open question in most regenerative species. Here, we take a transcriptomics approach to examine whether leg regeneration shows similar temporal patterns of gene expression as leg development in the embryo, in the crustacean .

View Article and Find Full Text PDF

Arthropods are the most abundant and diverse animals on earth. Among them, pancrustaceans are an ancient and morphologically diverse group, comprising a wide range of aquatic and semi-aquatic crustaceans as well as the insects, which emerged from crustacean ancestors to colonize most terrestrial habitats. Within insects, Drosophila stands out as one of the most powerful animal models, making major contributions to our understanding of development, physiology and behavior.

View Article and Find Full Text PDF

Deep learning is emerging as a powerful approach for bioimage analysis. Its use in cell tracking is limited by the scarcity of annotated data for the training of deep-learning models. Moreover, annotation, training, prediction, and proofreading currently lack a unified user interface.

View Article and Find Full Text PDF
Article Synopsis
  • Recent advancements in genetics and imaging technology are enabling researchers to reconstruct cell lineages, which track the history of cell divisions using live microscopy and molecular recorders.
  • A key research goal is to combine this lineage information with spatial data and cellular identities to create a more comprehensive understanding of cell relationships.
  • The web-based tool CeLaVi facilitates this integration by allowing users to interact with cell lineage data, visualize spatial distributions and cell characteristics in 3D, and annotate cells, enhancing the exploration of complex biological information.
View Article and Find Full Text PDF

The discovery that the nervous system plays a critical role in salamander limb regeneration, in 1823, provided the first mechanistic insights into regenerative phenomena and stimulated a long quest for molecular regulators. A role for nerves in the context of regeneration has been suggested for most vertebrate and invertebrate groups, thus offering a possible shared mechanism for the regulation of regenerative processes among animals. Methodological differences and technical limitations, especially in invertebrate groups, have so far hampered broad comparisons and the search for common principles on the role of nerves.

View Article and Find Full Text PDF

Background: Arthropod eyes have diversified during evolution to serve multiple needs, such as finding mates, hunting prey and navigating in complex surroundings under varying light conditions. This diversity is reflected in the optical apparatus, photoreceptors and neural circuits that underpin vision. Yet our ability to genetically manipulate the visual system to investigate its function is largely limited to a single species, the fruit fly Drosophila melanogaster.

View Article and Find Full Text PDF
Article Synopsis
  • Cell lineages are essential for understanding how cells develop and differentiate, but mapping them is complicated due to the large number of cells in organisms.
  • The study explores the use of CRISPR technology to create mutations as genetic markers for tracing cell lineages, assessing its effectiveness through computer simulations.
  • Findings highlight various factors, like cell division rates and mutation patterns, that affect the reliability of these CRISPR-based lineage reconstruction methods, indicating areas for improvement in future applications.
View Article and Find Full Text PDF

Clonal marking techniques based on the Cre/lox and Flp/FRT systems are widely used in multicellular model organisms to mark individual cells and their progeny, in order to study their morphology, growth properties and developmental fates. The same tools can be adapted to introduce specific genetic changes in a subset of cells within the body, i.e.

View Article and Find Full Text PDF

The amphipod crustacean is a blossoming model system for studies of developmental mechanisms and more recently regeneration. We have sequenced the genome allowing annotation of all key signaling pathways, transcription factors, and non-coding RNAs that will enhance ongoing functional studies. is a member of the Malacostraca clade, which includes crustacean food crop species.

View Article and Find Full Text PDF

Regeneration is a complex and dynamic process, mobilizing diverse cell types and remodelling tissues over long time periods. Tracking cell fate and behaviour during regeneration in active adult animals is especially challenging. Here, we establish continuous live imaging of leg regeneration at single-cell resolution in the crustacean .

View Article and Find Full Text PDF

How do some animals like crabs, flatworms and salamanders regenerate entire body parts after a severe injury? Which are the mechanisms and how did that regenerative ability evolve over time? The ability to regenerate complex organs is widespread in the animal kingdom, but fundamental, centuries-old questions remain unanswered. Forward genetics approaches that were so successful in probing embryonic development are lacking in most regenerative models, and candidate gene approaches can be biased and misleading. We summarize recent progress in establishing new genetic tools and approaches to study regeneration and provide a personal perspective on the feasibility and value of establishing such tools, based on our experience with a new experimental model, the crustacean Parhyale hawaiensis.

View Article and Find Full Text PDF

Gene-editing techniques are revolutionizing the way we conduct genetics in many organisms. The CRISPR/Cas nuclease has emerged as a highly versatile, efficient and affordable tool for targeting chosen sites in the genome. Beyond its applications in established model organisms, CRISPR technology provides a platform for genetic intervention in a wide range of species, limited only by our ability to deliver it to cells and to select mutations efficiently.

View Article and Find Full Text PDF

Developmental biology, as all experimental science, is empowered by technological advances. The availability of genetic tools in some species - designated as model organisms - has driven their use as major platforms for understanding development, physiology and behavior. Extending these tools to a wider range of species determines whether (and how) we can experimentally approach developmental diversity and evolution.

View Article and Find Full Text PDF

Developmental biologists have made surprising discoveries on the evolutionary origins of cell types, organs and body plans. Now, an elegant study in Drosophila raises interesting questions about the origin of two major endocrine organs of insects.

View Article and Find Full Text PDF

Many animals are able to regenerate amputated or damaged body parts, but it is unclear whether different taxa rely on similar strategies. Planarians and vertebrates use different strategies, based on pluripotent versus committed progenitor cells, respectively, to replace missing tissues. In most animals, however, we lack the experimental tools needed to determine the origin of regenerated tissues.

View Article and Find Full Text PDF

Noncoding RNAs have recently emerged as important regulators of mRNA translation and turnover [1, 2]. Nevertheless, we largely ignore how their function integrates with protein-mediated translational regulation. We focus on Bicoid, a key patterning molecule in Drosophila, which inhibits the translation of caudal in the anterior part of the embryo [3, 4].

View Article and Find Full Text PDF

In Drosophila, all segments form in the blastoderm where morphogen gradients spanning the entire anterior-posterior axis of the embryo provide positional information. However, in the beetle Tribolium castaneum and most other arthropods, a number of anterior segments form in the blastoderm, and the remaining segments form sequentially from a posterior growth zone during germband elongation. Recently, the cyclic nature of the pair-rule gene Tc-odd-skipped was demonstrated in the growth zone of Tribolium, indicating that a vertebrate-like segmentation clock is employed in the germband stage of its development.

View Article and Find Full Text PDF

Vertebrate segmentation relies on a mechanism characterized by oscillating gene expression. Whether this mechanism is used by other segmented animals has been controversial. Rigorous proof of cyclic expression during arthropod segmentation has been lacking.

View Article and Find Full Text PDF

We recently developed integrase-mediated trap conversion (iTRAC) as a means of exploiting gene traps to create new genetic tools, such as markers for imaging, drivers for gene expression and landing sites for gene and chromosome engineering. The principle of iTRAC is simple: primary gene traps are generated with transposon vectors carrying φC31 integrase docking sites, which are subsequently utilized to integrate different constructs into the selected trapped loci. Thus, iTRAC allows us to reconfigure selected traps for new purposes.

View Article and Find Full Text PDF

Genetic model organisms such as Drosophila, C. elegans and the mouse provide formidable tools for studying mechanisms of development, physiology and behaviour. Established models alone, however, allow us to survey only a tiny fraction of the morphological and functional diversity present in the animal kingdom.

View Article and Find Full Text PDF

The localization of maternal mRNAs during oogenesis plays a central role in axial specification in some insects. Here we describe a polar body-associated asymmetry in maternal transcript distribution in pre-blastoderm eggs of the beetle Tribolium castaneum. Since the position of the polar body marks the future dorsal side of the embryo, we have investigated whether this asymmetry in mRNA distribution plays a role in dorsal-ventral axis specification.

View Article and Find Full Text PDF

Background: The red flour beetle Tribolium castaneum has developed into an insect model system second only to Drosophila. Moreover, as a coleopteran it represents the most species-rich metazoan taxon which also includes many pest species. The genetic toolbox for Tribolium research has expanded in the past years but spatio-temporally controlled misexpression of genes has not been possible so far.

View Article and Find Full Text PDF