Gravitational-wave signals detected to date are commonly interpreted under the paradigm that they originate from pairs of black holes or neutron stars. Here, we explore the alternative scenario of boson-star signals being present in the data stream. We perform accurate and long (∼20 orbits) numerical simulations of boson-star binaries and inject the resulting strain into LIGO noise.
View Article and Find Full Text PDFThis Letter considers stellar core collapse in massive scalar-tensor theories of gravity. The presence of a mass term for the scalar field allows for dramatic increases in the radiated gravitational wave signal. There are several potential smoking gun signatures of a departure from general relativity associated with this process.
View Article and Find Full Text PDFThe Amaldi 10 Parallel Session C2 on gravitational wave (GW) search results, data analysis and parameter estimation included three lively sessions of lectures by 13 presenters, and 34 posters. The talks and posters covered a huge range of material, including results and analysis techniques for ground-based GW detectors, targeting anticipated signals from different astrophysical sources: compact binary inspiral, merger and ringdown; GW bursts from intermediate mass binary black hole mergers, cosmic string cusps, core-collapse supernovae, and other unmodeled sources; continuous waves from spinning neutron stars; and a stochastic GW background. There was considerable emphasis on Bayesian techniques for estimating the parameters of coalescing compact binary systems from the gravitational waveforms extracted from the data from the advanced detector network.
View Article and Find Full Text PDFFisher matrix and related studies have suggested that, with second-generation gravitational-wave detectors, it may be possible to infer the equation of state of neutron stars using tidal effects in a binary inspiral. Here, we present the first fully Bayesian investigation of this problem. We simulate a realistic data analysis setting by performing a series of numerical experiments of binary neutron-star signals hidden in detector noise, assuming the projected final design sensitivity of the Advanced LIGO-Virgo network.
View Article and Find Full Text PDF