Publications by authors named "Michalina Kurnatowska"

At the core of luminescence color and lifetime tuning of rare earth doped upconverting nanoparticles (UCNPs), is the understanding of the impact of the particle architecture for commonly used sensitizer (S) and activator (A) ions. In this respect, a series of core@shell NaYF UCNPs doped with Yb and Ho ions are presented here, where the same dopant concentrations are distributed in different particle architectures following the scheme: YbHo core and YbHo@…, …@YbHo, Yb@Ho, Ho@Yb, YbHo@Yb, and Yb@YbHo core-shell NPs. As revealed by quantitative steady-state and time-resolved luminescence studies, the relative spatial distribution of the A and S ions in the UCNPs and their protection from surface quenching has a critical impact on their luminescence characteristics.

View Article and Find Full Text PDF

This work highlights the importance of in situ experiments for an improved understanding of graphene growth on copper via metal-catalyzed chemical vapor deposition (CVD). Graphene growth inside the chamber of a modified environmental scanning electron microscope under relevant low-pressure CVD conditions allows visualizing structural dynamics of the active catalyst simultaneously with graphene nucleation and growth in an unparalleled way. It enables the observation of a complete CVD process from substrate annealing through graphene nucleation and growth and, finally, substrate cooling in real time and nanometer-scale resolution without the need of sample transfer.

View Article and Find Full Text PDF