Background: Transforming growth factor beta (TGFβ) is important for the morphogenesis and secretory function of the mammary gland. It is one of the main activators of the epithelial-mesenchymal transition (EMT), a process important for tissue remodeling and regeneration. It also provides cells with the plasticity to form metastases during tumor progression.
View Article and Find Full Text PDFResveratrol, a plant-derived polyphenol, is an intensively studied compound with widely documented positive effects on health. Antioxidant activity is the property most often mentioned as responsible for its beneficial effects. Therefore, since the adverse effect of ionizing radiation is primarily related to the induction of oxidative stress, the question arises of whether the use of resveratrol could have a radioprotective effect.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
September 2021
The mouse 3110001I22Rik gene located in the first intron of Bfar is considered as a Bfar variant coding for the BFARv3 protein. However, it differs from other BFAR isoforms and resembles periphilin 1 (PPHLN1) due to its two (Lge1 and serine-rich) conserved domains. We identified the BFARv3/EGFP-interacting proteins by co-immunoprecipitation coupled to mass spectrometry, which revealed 40S ribosomal proteins (RPS3, RPS14, RPS19, RPS25, RPS27), histones (H1.
View Article and Find Full Text PDFWe aimed to evaluate whether resveratrol affects radiation-induced changes in metabolite profiles of the mouse heart. Hearts were irradiated in vivo with a single 2 Gy dose during the resveratrol administration and metabolite profiles of heart tissue were analyzed by the untargeted HR-MAS NMR approach twenty weeks after irradiation. The administration of resveratrol mitigated the radiation-induced decline in the content of choline-containing compounds and unsaturated lipids, which might reflect the stabilization of cell membrane structure against radiation-related damage.
View Article and Find Full Text PDFInt J Radiat Biol
March 2020
Ionizing radiation is a risk factor to the whole organism, including the heart. Cardiac damage is considered to be a late effect of radiation exposure. While the acute cardiotoxicity of high doses is well characterized, the knowledge about nature and magnitude of the cardiac risk following lower doses exposure is incomplete.
View Article and Find Full Text PDFIonizing radiation may cause cardiotoxicity not only at high, but even at low (considered as harmless) doses, yet the molecular mechanisms of the heart's response to low doses are not clear. In this work, we used high-resolution nuclear magnetic resonance (NMR) spectroscopy to detect the early and late effects of radiation on the metabolism of murine hearts. The hearts of C57Bl/6NCrl female mice were irradiated in vivo with single 0.
View Article and Find Full Text PDFSeveral lines of evidence indicate that exposure of heart to ionizing radiation increases the risk of cardiotoxicity manifested by heart dysfunction and cardiovascular diseases. It was initially believed that the heart is an organ relatively resistant to radiation. Currently, however, it is suspected that even low doses of radiation (< 2 Gy) may have a negative impact on the cardiovascular system.
View Article and Find Full Text PDFJ Mater Sci Mater Med
January 2015
The aim of the study was to estimate the biomechanical properties of heart valves conduit derived from transgenic pigs to determine the usefulness for the preparation of tissue-engineered heart valves. The acellular aortic and pulmonary valve conduits from transgenic pigs were used to estimate the biomechanical properties of the valve. Non-transgenic porcine heart valve conduits were used as a reference.
View Article and Find Full Text PDFThe limitations associated with conventional valve prosthesis have led to a search for alternatives. One potential approach is tissue engineering. Most tissue engineering studies have described the biomechanical properties of heart valves derived from adult pigs.
View Article and Find Full Text PDFPostepy Hig Med Dosw (Online)
May 2014
Improvement of methods used in breast cancer therapy resulted in increased treatment effectiveness and prolonged survival of patients. However, this is accompanied by increased frequency of adverse side effects, including cardiac toxicity, which is becoming a serious problem affecting the quality of life and overall survival of cancer patients. The risk of developing cardiovascular complications depends on the type and dose of therapeutic agent used.
View Article and Find Full Text PDF