Publications by authors named "Michal Zmyslony"

We combine theory and experiments to explore the kinematics and actuation of intrinsically curved folds (ICFs) in otherwise developable shells. Unlike origami folds, ICFs are not bending isometries of flat sheets, but arise non-isometric processes (growth/moulding) or by joining sheets along curved boundaries. Experimentally, we implement both, first making joined ICFs from paper, then fabricating flat liquid crystal elastomer (LCE) sheets that morph into ICFs upon heating/swelling programmed metric changes.

View Article and Find Full Text PDF

Despite spectacular progress in microfluidics, small-scale liquid manipulation, with few exceptions, is still driven by external pumps and controlled by large-scale valves, increasing cost and size and limiting complexity. By contrast, optofluidics uses light to power, control and monitor liquid manipulation, potentially allowing for small, self-contained microfluidic devices. Here we demonstrate a soft light-propelled actuator made of liquid crystal gel that pumps microlitre volumes of water.

View Article and Find Full Text PDF

"How would you build a robot, the size of a bacteria, powered by light, that would swim towards the light source, escape from it, or could be controlled by means of different light colors, intensities or polarizations?" This was the question that Professor Diederik Wiersma asked PW on a sunny spring day in 2012, when they first met at LENS-the European Laboratory of Nonlinear Spectroscopy-in Sesto Fiorentino, just outside Florence in northern Italy. It was not just a vague question, as Prof. Wiersma, then the LENS director and leader of one of its research groups, already had an idea (and an ERC grant) about how to actually make such micro-robots, using a class of light-responsive oriented polymers, liquid crystal elastomers (LCEs), combined with the most advanced fabrication technique-two-photon 3D laser photolithography.

View Article and Find Full Text PDF

The ability to grip and handle small objects, from sub-millimeter electronic components to single-micrometer living cells, is vital for numerous ever-shrinking technologies. Mechanical grippers, powered by electric, pneumatic, hydraulic or piezoelectric servos, are well suited for the job at larger scales, but their complexity and need for force transmission prevent their miniaturization and remote control in tight spaces. Using liquid crystal elastomer microstructures that can change shape quickly and reversibly in response to light, a light-powered gripping tool-optical pliers-is built by growing two bending jaws on the tips of optical fibers.

View Article and Find Full Text PDF