Cancers harness embryonic programs to evade aging and promote survival. Normally, sequences at chromosome ends called telomeres shorten with cell division, serving as a countdown clock to limit cell replication. Therefore, a crucial aspect of cancerous transformation is avoiding replicative aging by activation of telomere repair programs.
View Article and Find Full Text PDF3D bioprinting holds great promise for meeting the increasing need for transplantable tissues and organs. However, slow printing, interlayer mixing, and the extended exposure of cells to non-physiological conditions in thick structures still hinder clinical applications. Here the DeepFreeze-3D (DF-3D) procedure and bioink for creating multilayered human-scale tissue mimetics is presented for the first time.
View Article and Find Full Text PDFTelomeres consist of special features and proteins to protect the ends of each chromosome from deterioration and fusion. The telomeric DNA repeats are highly susceptible to oxidative damage that can accelerate telomere shortening and affect telomere integrity. Several DNA repair factors including MYH/MUTYH DNA glycosylase, its interacting partners Rad9/Rad1/Hus1 checkpoint clamp, and SIRT6 aging regulator, are associated with the telomeres.
View Article and Find Full Text PDFBackground: Neurological disorders are considered one of the greatest burdens to global public health and a leading cause of death. Stem cell therapies hold great promise for the cure of neurological disorders, as stem cells can serve as cell replacement, while also secreting factors to enhance endogenous tissue regeneration. Adult human multipotent stem cells (MSCs) reside on blood vessels, and therefore can be found in many tissues throughout the body, including palatine tonsils.
View Article and Find Full Text PDFReduced NME1 expression in melanoma cell lines, mouse models of melanoma, and melanoma specimens in human patients is associated with increased metastatic activity. Herein, we investigate the role of NME1 in repair of double-stranded breaks (DSBs) and choice of double-strand break repair (DSBR) pathways in melanoma cells. Using chromatin immunoprecipitation, NME1 was shown to be recruited rapidly and directly to DSBs generated by the homing endonuclease I-PpoI.
View Article and Find Full Text PDFCancer stem cells (CSCs) are cells within tumors that maintain the ability to self-renew, drive tumor growth, and contribute to therapeutic resistance and cancer recurrence. In this study, we investigate the role of Zinc finger and SCAN domain containing 4 (ZSCAN4) in human head and neck squamous cell carcinoma (HNSCC). The murine Zscan4 is involved in telomere maintenance and genomic stability of mouse embryonic stem cells.
View Article and Find Full Text PDFTelomeres are a unique structure of DNA repeats covered by proteins at the ends of the chromosomes that protect the coding regions of the genome and function as a biological clock. They require a tight regulation of the factors covering and protecting their structure, as they are shortened with each cell division to limit the ability of cells to replicate uncontrollably. Additionally, they protect the chromosome ends from DNA damage responses and thereby, prevent genomic instability.
View Article and Find Full Text PDFZscan4 is an early embryonic gene cluster expressed in mouse embryonic stem and induced pluripotent stem cells where it plays critical roles in genomic stability, telomere maintenance, and pluripotency. Zscan4 expression is transient, and characterized by infrequent high expression peaks that are quickly down-regulated, suggesting its expression is tightly controlled. However, little is known about the protein degradation pathway responsible for regulating the human ZSCAN4 protein levels.
View Article and Find Full Text PDFBackground: Human adult stem cells hold the potential for the cure of numerous conditions and degenerative diseases. They possess major advantages over pluripotent stem cells as they can be derived from donors at any age, and therefore pose no ethical concerns or risk of teratoma tumor formation in vivo. Furthermore, they have a natural ability to differentiate and secrete factors that promote tissue healing without genetic manipulation.
View Article and Find Full Text PDFMARCH5, an OMM-associated E3 ubiquitin ligase, controls mitochondrial function. Despite its importance, the mechanism and factors controlling MARCH5 activity are largely unknown. Here we report that the MARCH5 C-terminal domain plays a critical role in degradation of MARCH5 substrates, likely by facilitating release of ubiquitinated proteins from the OMM.
View Article and Find Full Text PDFBackground: SIRT6, a member of the NAD(+)-dependent histone/protein deacetylase family, regulates genomic stability, metabolism, and lifespan. MYH glycosylase and APE1 are two base excision repair (BER) enzymes involved in mutation avoidance from oxidative DNA damage. Rad9-Rad1-Hus1 (9-1-1) checkpoint clamp promotes cell cycle checkpoint signaling and DNA repair.
View Article and Find Full Text PDFNetworks of transcription factors (TFs) are thought to determine and maintain the identity of cells. Here we systematically repressed each of 100 TFs with shRNA and carried out global gene expression profiling in mouse embryonic stem (ES) cells. Unexpectedly, only the repression of a handful of TFs significantly affected transcriptomes, which changed in two directions/trajectories: one trajectory by the repression of either Pou5f1 or Sox2; the other trajectory by the repression of either Esrrb, Sall4, Nanog, or Tcfap4.
View Article and Find Full Text PDFExceptional genomic stability is one of the hallmarks of mouse embryonic stem (ES) cells. However, the genes contributing to this stability remain obscure. We previously identified Zscan4 as a specific marker for two-cell embryo and ES cells.
View Article and Find Full Text PDFTo examine transcription factor (TF) network(s), we created mouse ESC lines, in each of which 1 of 50 TFs tagged with a FLAG moiety is inserted into a ubiquitously controllable tetracycline-repressible locus. Of the 50 TFs, Cdx2 provoked the most extensive transcriptome perturbation in ESCs, followed by Esx1, Sox9, Tcf3, Klf4, and Gata3. ChIP-Seq revealed that CDX2 binds to promoters of upregulated target genes.
View Article and Find Full Text PDFBiochem Biophys Res Commun
March 2006
Beta-cell replacement represents the ultimate cure for type 1 diabetes, however it is limited by availability of organ donors. Adult human islets are difficult to propagate in culture, and efforts to expand them result in dedifferentiation. Here we describe conditions for expansion of adult human islet cells, as well as a way for their redifferentiation.
View Article and Find Full Text PDFbeta-Cell transplantation is viewed as a cure for type 1 diabetes; however, it is limited by the number of pancreas donors. Human stem cells offer the promise of an abundant source of insulin-producing cells, given the existence of methods for manipulating their differentiation. We have previously demonstrated that the expression of the beta-cell transcription factor pancreatic duodenal homeobox 1 (PDX-1) in human fetal liver cells activates multiple aspects of the beta-cell phenotype.
View Article and Find Full Text PDFBeta-cell replacement is considered to be the most promising approach for treatment of type 1 diabetes. Its application on a large scale is hindered by a shortage of cells for transplantation. Activation of insulin expression, storage, and regulated secretion in stem/progenitor cells offers novel ways to overcome this shortage.
View Article and Find Full Text PDF