In this study, lyophilizates with the second-class antipsychotic agent lurasidone hydrochloride were developed as orodispersible platforms to improve patients' adherence. The primary aim was to evaluate the effect of the amino acid additive (L-arginine, L-lysine, L-histidine) and the freeze-drying stage on the pharmaceutical performance of the designed formulations. The composition was initially optimized using an experimental design approach.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
January 2025
The present study shows the effect of the hardness of bulk polyurethane on the properties of nanofibrous materials produced in the solution blow spinning process. This study focuses on nanofibrous materials made from medical-grade polyurethanes with different hardness values on the Shore scale, from 75A to 75D. We aimed to determine the effect of the intrinsic properties of polyurethane used to produce nanofibers on the tensile properties of the resulting nanofibrous materials and in vitro platelet adhesiveness.
View Article and Find Full Text PDF3D printing is a promising technique for producing bone implants, but there is still a need to adjust efficiency, facilitate production, and improve biocompatibility. Porous materials have a proven positive effect on the regeneration of bone tissue, but their production is associated with numerous limitations. In this work, we described a simple method of producing polymer or polymer-ceramic filaments for 3D-printing scaffolds by adding micrometer-scale porous structures on scaffold surfaces.
View Article and Find Full Text PDFIn this study, fibrous polyurethane (PU) materials with average fiber diameter of 200, 500, and 1000 nm were produced using a solution blow spinning (SBS) process. The effects of the rotation speed of the collector (in the range of 200-25 000 rpm) on the fiber alignment and diameter were investigated. The results showed that fiber alignment was influenced by the rotation speed of the collector, and such alignment was possible when the fiber diameter was within a specific range.
View Article and Find Full Text PDFHeart diseases are caused mainly by chronic oxygen insufficiency (hypoxia), leading to damage and apoptosis of cardiomyocytes. Research into the regeneration of a damaged human heart is limited due to the lack of cellular models that mimic damaged cardiac tissue. Based on the literature, nanofibrous mats affect the cardiomyocyte morphology and stimulate the growth and differentiation of cells cultured on them; therefore, nanofibrous materials can support the production of in vitro models that faithfully mimic the 3D structure of human cardiac tissue.
View Article and Find Full Text PDFInvestigating the potential of human cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) in in vitro heart models is essential to develop cardiac regenerative medicine. iPSC-CMs are immature with a fetal-like phenotype relative to cardiomyocytes in vivo. Literature indicates methods for enhancing the structural maturity of iPSC-CMs.
View Article and Find Full Text PDFThe challenge of integrating hydroxyapatite nanoparticles (nHAp) with polymers is hindered by the conflict between the hydrophilic and hygroscopic properties of nHAp and the hydrophobic properties of polymers. This conflict particularly affects the materials when calcium phosphates, including nHAp, are used as a filler in composites in thermal processing applications such as 3D printing with fused filament fabrication (FFF). To overcome this, we propose a one-step surface modification of nHAp with calcium stearate monolayer.
View Article and Find Full Text PDFCurrently, numerous studies are conducted using nanofibers as a scaffold for culture cardiac cells; however, there still needs to be more research evaluating the impact of the physicochemical properties of polymer nanofibers on the structure and function of cardiac cells. We have studied how poly(-caprolactone) and polyurethane nanofibrous mats with different physicochemical properties influence the viability, morphology, orientation, and maturation of cardiac cells. For this purpose, the cells taken from different species were used.
View Article and Find Full Text PDFPoly(carbonate-urea-urethane) (PCUU)-based scaffolds exhibit various desirable properties for tissue engineering applications. This study thus aimed to investigate the suitability of PCUU as polymers for the manufacturing of nonwoven mats by electrospinning, able to closely mimic the fibrous structure of the extracellular matrix. PCUU nonwovens of fiber diameters ranging from 0.
View Article and Find Full Text PDFThe nanoprecipitation method was used to formulate ε-polycaprolactone (PCL) into fluorescent nanoparticles. Two methods of mixing the phases were evaluated: introducing the organic phase into the aqueous phase dropwise and via a specially designed microfluidic device. As a result of the nanoprecipitation process, fluorescein-loaded nanoparticles (NPs) with a mean diameter of 127 ± 3 nm and polydispersity index (PDI) of 0.
View Article and Find Full Text PDF3D printing technology can deliver tailored, bioactive, and biodegradable bone implants. However, producing the new, experimental material for a 3D printer could be the first and one of the most challenging steps of the whole bone implant 3D printing process. Production of polymeric and polymer-ceramic filaments involves using costly filament extruders and significantly consuming expensive medical-grade materials.
View Article and Find Full Text PDFBiomaterial's surface functionalization for selective adhesion and patterned cell growth remains essential in developing novel implantable medical devices for regenerative medicine applications. We built and applied a 3D-printed microfluidic device to fabricate polydopamine (PDA) patterns on the surface of polytetrafluoroethylene (PTFE), poly(l-lactic acid--D,l-lactic acid) (PLA), and poly(lactic acid--glycolic acid) (PLGA). Then, we covalently attached the Val-Ala-Pro-Gly (VAPG) peptide to the created PDA pattern to promote the adhesion of the smooth muscle cells (SMCs).
View Article and Find Full Text PDFPolyester-based granular scaffolds are a potent material for tissue engineering due to their porosity, controllable pore size, and potential to be molded into various shapes. Additionally, they can be produced as composite materials, e.g.
View Article and Find Full Text PDF3D printing is a promising technique for obtaining bone implants. However, 3D printed bone implants, especially those printed using fused deposition modelling, are still in the experimental phase despite decades of work. Research on new materials faces numerous limitations, such as reagents' cost and machines' high prices to produce filaments for 3D printing polymer-ceramic composites for fused deposition modelling.
View Article and Find Full Text PDFSynthetic bone repair materials are becoming increasingly popular in tissue engineering as a replacement for autografts and human/animal-based bone grafts. The biomedical application requires precise control over the material composition and structure, as well as over the size of granulate used for filling the bone defects, as the pore size and interconnectivity affect the regeneration process. This paper proposes a process of alloplastic and biodegradable polylactic acid/β-tricalcium phosphate granulates preparation and its parameters described.
View Article and Find Full Text PDFIn the present work, a solution blow spun nanofibrous mat comprised of chitosan (CS) and poly(ethylene oxide) (PEO) was obtained as vaginal platform for tenofovir disoproxil fumarate (TDF) to prevent sexually transmitted infections. Apart from physicochemical and mechanical analysis, the specific steps involved studies on nanofibrous mat mucoadhesive and swelling characteristics upon pH fluctuations over the physiological range. Physicochemical analysis showed uniform drug distribution within the CS/PEO mat volume and pointed toward physical interactions between the drug and polymers.
View Article and Find Full Text PDFNanofibrous materials are widely investigated as a replacement for the extracellular matrix, the 3D foundation for cells in all tissues. However, as with every medical material, nanofibers too must pass all safety evaluations like in vitro cytotoxicity assays or in vivo animal tests. Our literature research showed that differences in results of widely used cytotoxicity assays applied to evaluate nanofibrous materials are poorly understood.
View Article and Find Full Text PDFChitosan (CS)/poly(ethylene oxide) (PEO)-based nanofiber mats have attracted particular attention as advanced materials for medical and pharmaceutical applications. In the scope of present studies, solution blow spinning was applied to produce nanofibers from PEO and CS and physicochemical and biopharmaceutical studies were carried out to investigate their potential as wound nanomaterial for skin healing and regeneration. Additional coating with hydrophobic poly(dimethylsiloxane) was applied to favor removal of nanofibers from the wound surface.
View Article and Find Full Text PDFRapid endothelialization helps overcome the limitations of small-diameter vascular grafts. To develop biomimetic non-thrombogenic coatings supporting endothelialization, medical-grade polyurethane (PU) nanofibrous mats and tubular scaffolds with a diameter below 6 mm prepared by solution blow spinning were coated with polydopamine (PDA), or PDA and gelatin (PDA/Gel). The scaffolds were characterized by scanning electron microscopy, porosity measurement, tensile testing, wettability, Fourier Transform Infrared spectroscopy, and termogravimetric analysis, followed by the measurement of coating stability on the tubular scaffolds.
View Article and Find Full Text PDFThis study aimed to analyze the growth of two types of blood vessel building cells: endothelial cells (ECs) and smooth muscle cells (SMCs) on surfaces with different morphology. Two types of materials, differing in morphology, were produced by the solution blow spinning technique. One-layer materials consisted of one fibrous layer with two fibrous surfaces.
View Article and Find Full Text PDFRegenerative medicine and stem cells could prove to be an effective solution to the problem of treating heart failure caused by ischemic heart disease. However, further studies on the understanding of the processes which occur during the regeneration of damaged tissue are needed. Microfluidic systems, which provide conditions similar to in vivo, could be useful tools for the development of new therapies using stem cells.
View Article and Find Full Text PDFThe growing popularity of solution blow spinning as a method for the production of fibrous tissue engineering scaffolds and the vast range of polymer-solvent systems available for the method raises the need to study the effect of processing conditions on fiber morphology and develop a method for its qualitative assessment. Rheological approaches to determine polymer solution spinnability and image analysis approaches to describe fiber diameter and alignment have been previously proposed, although in a separate manner and mostly for the widely known, well-researched electrospinning method. In this study, a series of methods is presented to determine the processing conditions for the development of submicron fibrous scaffolds.
View Article and Find Full Text PDFThe search for the perfect bone graft material is an important topic in material science and medicine. Despite human bone being the ideal material, due to its composition, morphology, and familiarity with cells, autografts are widely considered demanding and cause additional stress to the patient because of bone harvesting. However, human bone from tissue banks can be used to prepare materials in eligible form for transplantation.
View Article and Find Full Text PDFThe use of nanofibrous materials in the field of tissue engineering requires a fast, efficient, scalable production method and excellent wettability of the obtained materials, leading to enhanced cell adhesion. We proposed the production method of superhydrophilic nanofibrous materials in a two-step process. The process is designed to increase the wettability of resulting scaffolds and to enhance the rate of fibroblast cell adhesion.
View Article and Find Full Text PDF