RNA-seq is currently the only method that can provide a comprehensive landscape of circular RNA (circRNAs) in the whole organism and its particular organs. Recent years have brought an increasing number of RNA-seq-based reports on plant circRNAs. Notably, the picture they revealed is questionable and depends on the applied circRNA identification and quantification techniques.
View Article and Find Full Text PDFCircular RNAs (circRNAs) are the products of the non-canonical splicing of pre-mRNAs. In contrast to humans and animals, our knowledge of the biogenesis and function of circRNAs in plants is very scarce. To identify proteins involved in plant circRNA generation, we characterized the transcriptomes of 18 knockout mutants for genes related to splicing.
View Article and Find Full Text PDFIn Huntington disease (HD) subtle symptoms in patients may occur years or even decades prior to diagnosis. HD changes at a molecular level may begin as early as in cells that are non-lineage committed such as stem cells or HD patients induced pluripotent stem cells (iPSCs) offering opportunity to enhance the understanding of the HD pathogenesis. In addition, juvenile HD non-linage committed cells were previously not directly investigated in detail by RNA-seq.
View Article and Find Full Text PDFThe folding of tRNA fragments (tRFs) into G-quadruplex structures and the implications of G-quadruplexes in translational inhibition have been studied mainly in mammalian systems. To increase our knowledge of these phenomena, we determined the influence of human and plant tRFs and model G-quadruplexes on translation in rabbit reticulocyte lysate and wheat germ extract. The efficiency of translational inhibition in the mammalian system was strongly associated with the type of G-quadruplex topology.
View Article and Find Full Text PDF