Telocytes, distinctive interstitial cells, have recently emerged as crucial components of the stem-cell niche in the intestine. Notably, telocytes are distinguished by their extremely long cellular protrusions extending hundreds of microns from the cell body, forming an interconnected network along the intestinal crypt villus axis. Due to these unique cellular characteristics, there is a need for tailored working protocols to effectively characterize and target telocytes.
View Article and Find Full Text PDFTelocytes are unique mesenchymal cells characterized by multiple remarkably long cytoplasmic extensions that extend hundreds of micron away from the cell body. Through these extensions, telocytes establish a 3-dimensional network by connecting with other telocytes and various cell types within the tissue. In the intestine, telocytes have emerged as an essential component of the stem cell niche, providing Wnt proteins that are critical for the proliferation of stem and progenitor cells.
View Article and Find Full Text PDFTET2/3 play a well-known role in epigenetic regulation and mouse development. However, their function in cellular differentiation and tissue homeostasis remains poorly understood. Here we show that ablation of TET2/3 in intestinal epithelial cells results in a murine phenotype characterized by a severe homeostasis imbalance in the small intestine.
View Article and Find Full Text PDFThe murine small intestine, or colon mesenchyme, is highly heterogenous, containing distinct cell types including blood and lymphatic endothelium, nerves, fibroblasts, myofibroblasts, smooth muscle cells, immune cells, and the recently identified cell type, telocytes. Telocytes are unique mesenchymal cells with long cytoplasmic processes, reaching a distance of tens to hundreds of microns from the cell body. Telocytes have recently emerged as an important intestinal stem cell niche component, providing Wnt proteins that are essential for stem and progenitor cell proliferation.
View Article and Find Full Text PDFBackground & Aims: Primary liver cancers include hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (CCA) and combined HCC-CCA tumors (cHCC-CCA). It has been suggested, but not unequivocally proven, that hepatic progenitor cells (HPCs) can contribute to hepatocarcinogenesis. We aimed to determine whether HPCs contribute to HCC, cHCC-CCA or both types of tumors.
View Article and Find Full Text PDFWe recently identified a FOXL1+ intestinal subepithelial network of telocytes (TCs) without which epithelial stem and progenitor cells cannot proliferate and support regeneration. In addition to FOXL1 lineage cell distribution along the intestinal epithelium, we also observed their presence within the muscle layers. Here, we characterized FOXL1+ lineage cells along the muscle layers of the duodenum in order to understand their progeny and relation to interstitial Cajal cells (ICCs), smooth muscle cells (SMCs) and the previously reported PDGFRa+ TCs.
View Article and Find Full Text PDFThe intestinal epithelium is a structured organ composed of crypts harboring Lgr5+ stem cells, and villi harboring differentiated cells. Spatial transcriptomics have demonstrated profound zonation of epithelial gene expression along the villus axis, but the mechanisms shaping this spatial variability are unknown. Here, we combine laser capture micro-dissection and single cell RNA sequencing to uncover spatially zonated populations of mesenchymal cells along the crypt-villus axis.
View Article and Find Full Text PDFChange history: In this Letter, the surname of author Efi E. Massasa was misspelled 'Massassa'. This error has been corrected online.
View Article and Find Full Text PDFTissues that undergo rapid cellular turnover, such as the mammalian haematopoietic system or the intestinal epithelium, are dependent on stem and progenitor cells that proliferate to provide differentiated cells to maintain organismal health. Stem and progenitor cells, in turn, are thought to rely on signals and growth factors provided by local niche cells to support their function and self-renewal. Several cell types have been hypothesized to provide the signals required for the proliferation and differentiation of the intestinal stem cells in intestinal crypts.
View Article and Find Full Text PDFChromatin is traditionally viewed as a nuclear entity that regulates gene expression and silencing. However, we recently discovered the presence of cytoplasmic chromatin fragments that pinch off from intact nuclei of primary cells during senescence, a form of terminal cell-cycle arrest associated with pro-inflammatory responses. The functional significance of chromatin in the cytoplasm is unclear.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
February 2016
Background & Aims: Intestinal epithelial stem cells that express Lgr5 and/or Bmi1 continuously replicate and generate differentiated cells throughout life. Previously, Paneth cells were suggested to constitute an epithelium-intrinsic niche that regulates the behavior of these stem cells. However, ablating Paneth cells has no effect on maintenance of functional stem cells.
View Article and Find Full Text PDFBackground: VICKZ (IGF2BP1,2,3/ZBP1/Vg1RBP/IMP1,2,3) proteins bind RNA and help regulate many RNA-mediated processes. In the midbrain region of early chick embryos, VICKZ is expressed in the neural folds and along the basal surface of the neural epithelium, but, upon neural tube closure, is down-regulated in prospective cranial neural crest (CNC) cells, concomitant with their emigration and epithelial-to-mesenchymal transition (EMT). Electroporation of constructs that modulate cVICKZ expression demonstrates that this down-regulation is both necessary and sufficient for CNC EMT.
View Article and Find Full Text PDF