Publications by authors named "Michal Piotrowicz"

Chitinase-3-like-1 (CHI3L1), also known as YKL-40, is a glycoprotein linked to inflammation, fibrosis, and cancer. This study explored CHI3L1's interactions with various oligosaccharides using microscale thermophoresis (MST) and AlphaScreen (AS). These investigations guided the development of high-throughput screening assays to assess interference of small molecules in binding between CHI3L1 and biotinylated small molecules or heparan sulfate-based probes.

View Article and Find Full Text PDF

The knowledge pertaining to the chemistry and biological activity of glycol nucleic acid (GNA) components, like nucleosides and nucleotides, is still very limited. Herein we report on the preparation of the uracil nucleoside (1) and nucleotide ester GNA (2). The compounds are functionalised with a luminescent phenanthrenyl group.

View Article and Find Full Text PDF

Chitotriosidase (CHIT1) and acidic mammalian chitinase (AMCase) are the enzymatically active chitinases that have been implicated in the pathology of chronic lung diseases such as asthma and interstitial lung diseases (ILDs), including idiopathic pulmonary fibrosis (IPF) and sarcoidosis. The clinical and preclinical data suggest that pharmacological inhibition of CHIT1 might represent a novel therapeutic approach in IPF. Structural modification of an advanced lead molecule led to the identification of compound (, a highly active CHIT1 inhibitor with both an excellent PK profile in multiple species and selectivity against a panel of other off-targets.

View Article and Find Full Text PDF

Human acidic mammalian chitinase (hAMCase) is one of two true chitinases in humans, the function of which remains elusive. In addition to the defense against highly antigenic chitin and chitin-containing pathogens in the gastric and intestinal contents, AMCase has been implicated in asthma, allergic inflammation, and ocular pathologies. Potent and selective small-molecule inhibitors of this enzyme have not been identified to date.

View Article and Find Full Text PDF

Acidic mammalian chitinase (AMCase) and chitotriosidase-1 (CHIT1) are two enzymatically active proteins produced by mammals capable of cleaving the glycosidic bond in chitin. Based on the clinical findings and animal model studies, involvement of chitinases has been suggested in several respiratory system diseases including asthma, COPD, and idiopathic pulmonary fibrosis. Exploration of structure-activity relationships within the series of 1-(3-amino-1-1,2,4-triazol-5-yl)-piperidin-4-amines, which was earlier identified as a scaffold of potent AMCase inhibitors, led us to discover highly active dual (i.

View Article and Find Full Text PDF

This article describes our work towards the identification of a potent and selective inhibitor of mouse chitotriosidase (mCHIT1). A series of small molecule inhibitors of mCHIT1 and mAMCase have been developed from early lead compound 1. Examination of synthetized analogues led to discovery of several novel highly potent compounds.

View Article and Find Full Text PDF

An aerobic dehydrogenative Heck reaction of pyrene (1a) and 2,7-di-tert-butylpyrene (1b) with ethyl acrylate is reported. The reaction is catalyzed by a Pd(OAc)2/4,5-diazafluoren-9-one (DAF) system and takes place in acetic or pivalic acid as solvents at 110-130 °C. The reaction of 1a afforded a 6:1 mixture of C-1- and C-4-alkenylated pyrenes (2a and 3a, respectively) in 71% yield.

View Article and Find Full Text PDF

Absolute total cross sections (TCSs) for electron scattering from boron trifluoride (BF(3)) and phosphorus trifluoride (PF(3)) molecules have been measured using a linear transmission method. The electron energy ranges from 0.6 to 370 eV for BF(3) and from 0.

View Article and Find Full Text PDF