Publications by authors named "Michal Mruczkiewicz"

Magnetic skyrmions, topological quasiparticles, are small stable magnetic textures that possess intriguing properties and potential for data storage applications. Hybrid nanostructures comprised of skyrmions and soft magnetic material can offer additional advantages for developing skyrmion-based spintronic and magnonic devices. We show that a Néel-type skyrmion confined within a nanodot placed on top of a ferromagnetic in-plane magnetized stripe produces a unique and compelling platform for exploring the mutual coupling between magnetization textures.

View Article and Find Full Text PDF

Controlling the vortex chirality in ferromagnetic nanodots and nanorings has been a topic of investigation for the last few years. Many control methods have been proposed and it has been found that the control is related to the breaking of the circular symmetry of the ring. In this paper, we present a theoretical study demonstrating the control of chirality in a symmetrical ferromagnetic nanoring by breaking the circular symmetry of the system by placing an elongated ferromagnetic nanoelement inside the ring.

View Article and Find Full Text PDF

We demonstrated numerically the skyrmion formation in ultrathin nanodisks using a magnetic force microscopy tip. We found that the local magnetic field generated by the magnetic tip significantly affects the magnetization state of the nanodisks and leads to the formation of skyrmions. Experimentally, we confirmed the influence of the local field on the magnetization states of the disks.

View Article and Find Full Text PDF

Three-dimensional Langmuir-Blodgett films made of silica beads are theoretically and experimentally investigated in order to improve the relatively small efficiency of blue OLEDs. Using films made of 5 layers of beads, we fabricated OLEDs emitting at 476 nm, and measured a gain of around 40% on their external quantum efficiency. An optical model has been developed to accurately handle the fact that the organic emitting layer and the photonic extraction layer are separated by a distance greater than 1000 wavelength.

View Article and Find Full Text PDF