This paper presents a novel design of a low-loss, reconfigurable broadband phase shifter based on groove gap waveguide (GGW) technology. The proposed phase shifter consists of a folded GGW and three bends with a few pins forming the GGW and one bend attached to a movable plate. This movable plate allows for adjustments to the folded waveguide length, consequently altering the phase of electromagnetic waves.
View Article and Find Full Text PDFThe application of different types of microwave resonators for sensing cracks in metallic structures has been subject of many studies. While most studies have been focused on improving the sensitivity of planar crack sensors, the theoretical foundation of the topic has not been treated in much detail. The major objective of this study is to perform an exhaustive study of the principles and theoretical foundations for crack sensing based on planar microwave resonators, especially defective ground structures (DGS) including complementary split ring resonators (CSRRs).
View Article and Find Full Text PDFPolymer composites with high dielectric constant and low loss tangent are highly regarded as substrates for modern high-speed electronics. In this work, we analyze the high-frequency dielectric properties of two types of composites based on polypropylene infused with high-dielectric-constant microparticles. Two types of fillers are used: commercial ceramics or titanium oxide (TiO) with different concentrations.
View Article and Find Full Text PDFA novel microwave sensor with the mu-near-zero (MNZ) property is proposed for testing magnetodielectric material at 4.5 GHz. The sensor has a double-layer design consisting of a microstrip line and a metal strip with vias on layers 1 and 2, respectively.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
September 2005
A Fabry-Perot resonator operating at 39 GHz, with two pairs of quarter-wavelength single-crystal quartz Bragg reflectors has been realized. For the length of 98.26 mm, its Q-factor is about 560,000, which is 4.
View Article and Find Full Text PDF