Purpose: Recent advances to preserve neurocognitive function in patients treated for brain metastases include stereotactic radiosurgery, hippocampal avoidance whole brain radiation therapy (WBRT), and memantine administration. The hippocampus, corpus callosum, fornix, and amygdala are key neurocognitive substructures with a low propensity for brain metastases. Herein, we report our preliminary experience using a "memory-avoidance" WBRT (MA-WBRT) approach that spares these substructures for patients with >15 brain metastases.
View Article and Find Full Text PDFAdequate dose homogeneity and full prescription dose delivery to the scalp still remains a dosimetric problem during scalp irradiation due to the anatomical shape of the cranium. Confounding variables such as gravity, the irregular and convex shape of the cranium, air gaps between scalp surface and commercial bolus, and potential inconsistencies in a 3D printed bolus can negatively impact the dose delivered to the scalp surface during scalp irradiation. The purpose of this retrospective case study was to implement the use of a 3D milled rigid bolus technique combined with volumetric modulated arc therapy (VMAT) treatment planning and evaluate the dosimetric efficacy in delivering dose to the surface of the scalp.
View Article and Find Full Text PDF