Publications by authors named "Michal Kowalewski"

Long-term baseline data that allow tracking how predator-prey interactions have responded to intensifying human impacts are often lacking. Here, we assess temporal changes in benthic community composition and interactions between drilling predatory gastropods and their molluscan prey using the Holocene fossil record of the shallow northern Adriatic Sea, which is characterized by a long history of human transformation. Molluscan assemblages differ between the Isonzo and Po prodelta, but both show consistent temporal trends in the abundance of dominant species.

View Article and Find Full Text PDF

Species diversity increases with the temporal grain of samples according to the species-time relationship (STR), impacting palaeoecological analyses because the temporal grain (time averaging) of fossil assemblages varies by several orders of magnitude. We predict a positive relation between total abundance and sample size-independent diversity (ADR) in fossil assemblages because an increase in time averaging, determined by a decreasing sediment accumulation, should increase abundance and depress species dominance. We demonstrate that, in contrast to negative ADR of non-averaged living assemblages, the ADR of Holocene fossil assemblages is positive, unconditionally or when conditioned on the energy availability gradient.

View Article and Find Full Text PDF

Although the fossil record preserves a wealth of historical data about past ecosystems, the current paradigm, which postulates that fossils provide faithful archives of ecological information, stems from research primarily focused on a single group of organisms known for their high fossilization potential: molluscs. Here, we quantify the fidelity of higher taxa (six phyla and 11 classes) by comparing live communities and sympatric dead remains (death assemblages) using comprehensive surveys of benthic marine invertebrates from coastal habitats in North Carolina (U.S.

View Article and Find Full Text PDF

Background: Irregular echinoids are ecosystem engineers with diverse functional services. Documenting present-day distribution of those widespread organisms is important for understanding their ecological significance and enhancing our ability to interpret their rich fossil record.

Methods: This study summarizes SCUBA surveys of clypeasteroid and spatangoid echinoids conducted in 2020 and 2021 along the central part of the Florida Keys.

View Article and Find Full Text PDF

Repeated polygonal patterns are pervasive in natural forms and structures. These patterns provide inherent structural stability while optimizing strength-per-weight and minimizing construction costs. In echinoids (sea urchins), a visible regularity can be found in the endoskeleton, consisting of a lightweight and resistant micro-trabecular meshwork (stereom).

View Article and Find Full Text PDF

Preserving adaptive capacities of coastal ecosystems, which are currently facing the ongoing climate warming and a multitude of other anthropogenic impacts, requires an understanding of long-term biotic dynamics in the context of major environmental shifts prior to human disturbances. We quantified responses of nearshore mollusk assemblages to long-term climate and sea-level changes using 223 samples (~71,300 specimens) retrieved from latest Quaternary sediment cores of the Adriatic coastal systems. These cores provide a rare chance to study coastal systems that existed during glacial lowstands.

View Article and Find Full Text PDF

Predation traces found on fossilized prey remains can be used to quantify the evolutionary history of biotic interactions. Fossil mollusc shells bearing these types of traces provided key evidence for the rise of predation during the Mesozoic marine revolution (MMR), an event thought to have reorganized global marine ecosystems. However, predation pressure on prey groups other than molluscs has not been explored adequately.

View Article and Find Full Text PDF

The hypothesis of the Great Evolutionary Faunas is a foundational concept of macroevolutionary research postulating that three global mega-assemblages have dominated Phanerozoic oceans following abrupt biotic transitions. Empirical estimates of this large-scale pattern depend on several methodological decisions and are based on approaches unable to capture multiscale dynamics of the underlying Earth-Life System. Combining a multilayer network representation of fossil data with a multilevel clustering that eliminates the subjectivity inherent to distance-based approaches, we demonstrate that Phanerozoic oceans sequentially harbored four global benthic mega-assemblages.

View Article and Find Full Text PDF

Palaeoecological data are unique historical archives that extend back far beyond the last several decades of ecological observations. However, the fossil record of continental shelves has been perceived as too coarse (with centennial-millennial resolution) and incomplete to detect processes occurring at yearly or decadal scales relevant to ecology and conservation. Here, we show that the youngest (Anthropocene) fossil record on the northern Adriatic continental shelf provides decadal-scale resolution that accurately documents an abrupt ecological change affecting benthic communities during the twentieth century.

View Article and Find Full Text PDF

The function of Late Archaic period (5000-3000 B.P.) shell rings has been a focus of debate among archaeologists for decades.

View Article and Find Full Text PDF

Ecological studies indicate that structurally complex habitats support elevated biodiversity, stability and resilience. The long-term persistence of structured habitats and their importance in maintaining biodiverse hotspots remain underexplored. We combined geohistorical data (dead mollusc assemblages, 'DA') and contemporary surveys (live mollusc assemblages, 'LA') to assess the persistence of local seagrass habitats over multi-centennial timescales and to evaluate whether they acted as long-term drivers of biodiversity, stability and resilience of associated fauna.

View Article and Find Full Text PDF

Stratigraphic patterns of last occurrences (LOs) of fossil taxa potentially fingerprint mass extinctions and delineate rates and geometries of those events. Although empirical studies of mass extinctions recognize that random sampling causes LOs to occur earlier than the time of extinction (Signor-Lipps effect), sequence stratigraphic controls on the position of LOs are rarely considered. By tracing stratigraphic ranges of extant mollusc species preserved in the Holocene succession of the Po coastal plain (Italy), we demonstrated that, if mass extinction took place today, complex but entirely false extinction patterns would be recorded regionally due to shifts in local community composition and non-random variation in the abundance of skeletal remains, both controlled by relative sea-level changes.

View Article and Find Full Text PDF

Despite its importance for quantifying ecosystem responses to environmental and anthropogenic drivers, our understanding of spatial heterogeneity in marine communities remains inadequate. Studies in coastal marine benthic habitats are sparse, and predominantly target single higher taxonomic groups. Here we describe macrobenthic marine invertebrate community surveys from 52 localities in Onslow Bay (Beaufort, North Carolina, U.

View Article and Find Full Text PDF

The forecasts of increasing global temperature and sea level rise have led to concern about the response of parasites to anthropogenic climate change. Whereas ecological studies of parasite response to environmental shifts are necessarily limited to short time scales, the fossil record can potentially provide a quantitative archive of long-term ecological responses to past climate transitions. Here, we document multi-centennial scale changes in prevalence of trematodes infesting the bivalve host Abra segmentum through multiple sea-level fluctuations preserved in brackish Holocene deposits of the Po Plain, Italy.

View Article and Find Full Text PDF

Over the past 3.8 billion years, the maximum size of life has increased by approximately 18 orders of magnitude. Much of this increase is associated with two major evolutionary innovations: the evolution of eukaryotes from prokaryotic cells approximately 1.

View Article and Find Full Text PDF

The escalation hypothesis posits that predation by increasingly powerful and metabolically active carnivores has been a major driver of metazoan evolution. We test a key tenet of this hypothesis by analyzing predatory drill holes in fossil marine shells, which provide a ~500-million-year record of individual predator-prey interactions. We show that drill-hole size is a robust predictor of body size among modern drilling predators and that drill-hole size (and thus inferred predator size and power) rose substantially from the Ordovician to the Quaternary period, whereas the size of drilled prey remained stable.

View Article and Find Full Text PDF

Rigorous documentation of spatial heterogeneity (β-diversity) in present-day and preindustrial ecosystems is required to assess how marine communities respond to environmental and anthropogenic drivers. However, the overwhelming majority of contemporary and palaeontological assessments have centred on single higher taxa. To evaluate the validity of single taxa as community surrogates and palaeontological proxies, we compared macrobenthic communities and sympatric death assemblages at 52 localities in Onslow Bay (NC, USA).

View Article and Find Full Text PDF

Because anthropogenic impacts on ecological systems pre-date the oldest scientific observations, historical documents and archaeological records, understanding modern extinctions requires additional data sources that extend further back in time. Palaeoecological records, which provide quantitative proxy records of ecosystems prior to human impact, are essential for understanding recent extinctions and future extinction risks. Here we critically review the value of the most recent fossil record in contributing to our understanding of modern extinctions and illustrate through case studies how naturally occurring death assemblages and Holocene sedimentary records provide context to the plight of marine ecosystems.

View Article and Find Full Text PDF

Studies in systematic palaeontology are greatly aided when numerous, well-preserved specimens are available so that quantitative methods can be used to substantiate qualitative observations. This is often not the case for fossil decapod crustaceans due to their relatively low preservation potential. Here, we examined primarily two large collections of the well-preserved ghost shrimp from the Holo-Pleistocene of Panama and the late Miocene of Florida.

View Article and Find Full Text PDF

The ecological and physiological significance of body size is well recognized. However, key macroevolutionary questions regarding the dependency of body size trends on the taxonomic scale of analysis and the role of environment in controlling long-term evolution of body size are largely unknown. Here, we evaluate these issues for decapod crustaceans, a group that diversified in the Mesozoic.

View Article and Find Full Text PDF

Responses of ecosystems to environmental changes vary greatly across habitats, organisms and observational scales. The Quaternary fossil record of the Po Basin demonstrates that marine communities of the northern Adriatic re-emerged unchanged following the most recent glaciation, which lasted approximately 100,000 years. The Late Pleistocene and Holocene interglacial ecosystems were both dominated by the same species, species turnover rates approximated predictions of resampling models of a homogeneous system, and comparable bathymetric gradients in species composition, sample-level diversity, dominance and specimen abundance were observed in both time intervals.

View Article and Find Full Text PDF

Benthic marine fossil associations have been used in paleontological studies as multivariate environmental proxies, with particular focus on their utility as water depth estimators. To test this approach directly, we evaluated modern marine invertebrate communities along an onshore-offshore gradient to determine the relationship between community composition and bathymetry, compare the performance of various ordination techniques, and assess whether restricting community datasets to preservable taxa (a proxy for paleontological data) and finer spatial scales diminishes the applicability of multivariate community data as an environmental proxy. Different indirect (unconstrained) ordination techniques (PCoA, CA, DCA, and NMDS) yielded consistent outcomes: locality Axis 1 scores correlated with actual locality depths, and taxon Axis 1 scores correlated with actual preferred taxon depths, indicating that changes in faunal associations primarily reflect bathymetry, or its environmental correlatives.

View Article and Find Full Text PDF

Multi-decadal increase in shell removal by tourists, a process that may accelerate degradation of natural habitats, was quantified via two series of monthly surveys, conducted thirty years apart (1978-1981 and 2008-2010) in one small embayment on the Mediterranean coast of the Iberian Peninsula. Over the last three decades, the local tourist arrivals have increased almost three-fold (2.74), while the area has remained unaffected by urban encroachment and commercial fisheries.

View Article and Find Full Text PDF

Quantitative estimates of growth rates can augment ecological and paleontological applications of body-size data. However, in contrast to body-size estimates, assessing growth rates is often time-consuming, expensive, or unattainable. Here we use an indirect approach, a jackknife-corrected parametric bootstrap, for efficient approximation of growth rates using nearest living relatives with known age-size relationships.

View Article and Find Full Text PDF

We report quantitative analyses of drilling predation on the free-living, tube-dwelling serpulid polychaete Ditrupa arietina from the Cope Cabo marine succession (Pliocene, Spain). Tubes of D. arietina are abundant in the sampled units: 9 bulk samples from 5 horizons yielded ~5925 specimens of D.

View Article and Find Full Text PDF