Rasagiline (Azilect) is a selective monoamine oxidase B (MAO-B) inhibitor that provides symptomatic benefits in Parkinson's disease (PD) treatment and has been found to exert preclinical neuroprotective effects. Here, we investigated the neuroprotective signaling pathways of acute rasagiline treatment for 22 h in PC12 neuronal cultures exposed to oxygen-glucose deprivation (OGD) for 4 h, followed by 18 h of reoxygenation (R), causing 40% aponecrotic cell death. In this study, 3-10 µM rasagiline induced dose-dependent neuroprotection of 20-80%, reduced the production of the neurotoxic reactive oxygen species by 15%, and reduced the nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by 75-90%.
View Article and Find Full Text PDFTo develop peptide drugs targeting integrin receptors, synthetic peptide ligands endowed with well-defined selective binding motifs are necessary. The snake venom KTS-containing disintegrins, which selectively block collagen α1β1 integrin, were used as lead compounds for the synthesis and structure-activity relationship of a series of linear peptides containing the KTS-pharmacophore and alternating natural amino acids and 3-aminobenzoic acid (MABA). To ensure a better stiffness and metabolic stability, one, two and three MABA residues, were introduced around the KTS pharmacophore motif.
View Article and Find Full Text PDFThe clinical pathology of Taxol-induced peripheral neuropathy (TIPN), characterized by loss of sensory sensitivity and pain, is mirrored in a preclinical pharmacological mice model in which Gabapentin, produced anti-thermal hyperalgesia and anti-allodynia effects. The study aimed to investigate the hypothesis that gabapentin may protect against Taxol-induced neuropathic pain in association with an effect on intra-epidermal nerve fibers density in the TIPN mice model. A TIPN study schedule was induced in mice by daily injection of Taxol during the first week of the experiment.
View Article and Find Full Text PDFIntegrins α4β1/ α9β1 are important in the pathogenesis and progression of inflammatory and autoimmune diseases by their roles in leukocyte activation and trafficking. Natalizumab, a monoclonal antibody selectively targeting α4β1 integrin and blocking leukocyte trafficking to the central nervous system, is an immunotherapy for multiple sclerosis (MS). However, due to its adverse effects associated with chronic treatment, alternative strategies using small peptide mimetic inhibitors are being sought.
View Article and Find Full Text PDF