Two-dimensional (2D) materials have recently been incorporated into resistive memory devices because of their atomically thin nature, but their switching mechanism is not yet well understood. Here we study bipolar switching in MoTe-based resistive memory of varying thickness and electrode area. Using scanning thermal microscopy (SThM), we map the surface temperature of the devices under bias, revealing clear evidence of localized heating at conductive "plugs" formed during switching.
View Article and Find Full Text PDFSemiconducting MoTe is one of the few two-dimensional (2D) materials with a moderate band gap, similar to silicon. However, this material remains underexplored for 2D electronics due to ambient instability and predominantly p-type Fermi level pinning at contacts. Here, we demonstrate unipolar n-type MoTe transistors with the highest performance to date, including high saturation current (>400 μA/μm at 80 K and >200 μA/μm at 300 K) and relatively low contact resistance (1.
View Article and Find Full Text PDFBlack phosphorus (BP) is a promising two-dimensional (2D) material for nanoscale transistors, due to its expected higher mobility than other 2D semiconductors. While most studies have reported ambipolar BP with a stronger p-type transport, it is important to fabricate both unipolar p- and n-type transistors for low-power digital circuits. Here, we report unipolar n-type BP transistors with low work function Sc and Er contacts, demonstrating a record high n-type current of 200 μA/μm in 6.
View Article and Find Full Text PDFUltrathin transition metal dichalcogenides (TMDCs) have recently been extensively investigated to understand their electronic and optical properties. Here we study ultrathin MoWTe, a semiconducting alloy of MoTe, using Raman, photoluminescence (PL), and optical absorption spectroscopy. MoWTe transitions from an indirect to a direct optical band gap in the limit of monolayer thickness, exhibiting an optical gap of 1.
View Article and Find Full Text PDFThe success of silicon as a dominant semiconductor technology has been enabled by its moderate band gap (1.1 eV), permitting low-voltage operation at reduced leakage current, and the existence of SiO as a high-quality "native" insulator. In contrast, other mainstream semiconductors lack stable oxides and must rely on deposited insulators, presenting numerous compatibility challenges.
View Article and Find Full Text PDFTwo-dimensional (2D) semimetals beyond graphene have been relatively unexplored in the atomically thin limit. Here, we introduce a facile growth mechanism for semimetallic WTe2 crystals and then fabricate few-layer test structures while carefully avoiding degradation from exposure to air. Low-field electrical measurements of 80 nm to 2 μm long devices allow us to separate intrinsic and contact resistance, revealing metallic response in the thinnest encapsulated and stable WTe2 devices studied to date (3-20 layers thick).
View Article and Find Full Text PDFMolybdenum disulfide (MoS2), with its active edge sites, is a proposed alternative to platinum for catalyzing the hydrogen evolution reaction (HER). Recently, the inert basal plane of MoS2 was successfully activated and optimized with excellent intrinsic HER activity by creating and further straining sulfur (S) vacancies. Nevertheless, little is known about the HER kinetics of those S vacancies and the additional effects from elastic tensile strain.
View Article and Find Full Text PDF