Publications by authors named "Michal Gil"

Background: The use of immunotherapy in treatment of non-small cell lung cancer (NSCLC) patients with the gene mutations is an area of active research and is an item of clinical trials. While mutations are relatively infrequent in NSCLC patients, comprising approximately 1-3% of cases, the V600E substitution stands out as the most prevalent subtype of mutations. The presence of this mutation in cancer cells qualifies the patients for first-line therapy with BRAF and MEK inhibitors.

View Article and Find Full Text PDF

Mutations in the gene are among the most common mutations observed in cancer cells, but they have only recently become an achievable goal for targeted therapies. Two inhibitors, sotorasib and adagrasib, have recently been approved for the treatment of patients with advanced non-small cell lung cancer with the G12C mutation, while studies on their efficacy are still ongoing. In this work, we comprehensively analyzed gene mutations' molecular background, mutation testing, KRAS inhibitors' effectiveness with an emphasis on non-small cell lung cancer, the impact of mutations on immunotherapy outcomes, and drug resistance problems.

View Article and Find Full Text PDF

() gene mutations are among the most commonly found oncogenic alterations in non-small cell lung cancer (NSCLC) patients. Unfortunately, mutations have been considered "undruggable" for many years, making treatment options very limited. Immunotherapy targeting programmed death-ligand 1 (PD-L1), programmed death 1 (PD-1) and cytotoxic T lymphocyte antigen 4 (CTLA-4) has emerged as a promising therapeutic option for NSCLC patients.

View Article and Find Full Text PDF

Metastases to the central nervous system (CNS) in patients with non-small cell lung cancer constitute an extremely difficult clinical problem, and their occurrence is associated with a poor prognosis. Due to the existence of the blood-brain barrier (BBB) and the action of proteins responsible for the transport of drugs, e.g.

View Article and Find Full Text PDF

In patients with advanced non-small cell lung cancer (NSCLC), comprehensive genetic diagnostics is currently carried out in order to qualify for molecularly targeted therapies and immunotherapy. The aim of the study was to assess the usefulness of the reverse transcriptase (RT-PCR) method in the diagnosis of gene rearrangements, the effectiveness of EGFR, ALK, ROS1, and PD-L1 inhibitors in first-line treatment in NSCLC patients. We enrolled 95 non-squamous NSCLC patients with known status of EGFR, ALK, ROS1, MET and RET genes and PD-L1 protein expression.

View Article and Find Full Text PDF

The efficiency of immunotherapy using monoclonal antibodies that inhibit immune checkpoints has been proven in many clinical studies and well documented by numerous registration approaches. To date, PD-L1 expression on tumor and immune cells, tumor mutation burden (TMB), and microsatellite instability (MSI) are the only validated predictive factors used for the qualification of cancer patients for immunotherapy. However, they are not the ideal predictive factors.

View Article and Find Full Text PDF

Due to the limited effectiveness of immunotherapy used as first-line monotherapy in patients with non-small-cell lung cancer (NSCLC), the concepts of combining classical immunotherapy based on immune checkpoint antibodies with other treatment methods have been developed. Pembrolizumab and atezolizumab were registered in combination with chemotherapy for the treatment of metastatic NSCLC, while durvalumab found its application in consolidation therapy after successful chemoradiotherapy in patients with locally advanced NSCLC. Exceptionally attractive, due to their relatively low toxicity and high effectiveness, are treatment approaches in which a combination of two different immunotherapy methods is applied.

View Article and Find Full Text PDF

Anti-programmed death-1 or anti-programmed death-ligand 1 (PD-L1) blockade may be ineffective in some patients with non-small cell lung cancer (NSCLC) with high percentage of tumor cells with PD-L1 expression. In addition, immunotherapy may provide great benefits in patients without PD-L1 expression. The present study assessed PD-L1 protein expression by immunohistochemistry, copy number variation (CNV) of and two single nucleotide polymorphisms (SNPs), rs822335 and rs822336, in the promoter of by quantitative PCR in 673 patients with NSCLC.

View Article and Find Full Text PDF

Hemiporphycene (HPc), a constitutional isomer of porphyrin, is studied under supersonic expansion conditions by means of laser-induced fluorescence, visible-visible hole-burning experiments, single vibronic level fluorescence techniques, and quantum chemical calculations. Only one form of jet-cooled HPc is observed, in contrast to solution studies that evidence a mixture of two tautomeric forms separated in energy by ∼1 kcal/mol. Reliable structural assignment is provided by simulating absorption and emission patterns at the density functional theory and time-dependent density functional theory levels of theory.

View Article and Find Full Text PDF

Fluorescence studies of tautomerization have been carried out for various systems that exhibit single and double proton or hydrogen translocation in various environments, such as liquid and solid condensed phases, ultracold supersonic jets, and finally, polymer matrices with single emitters. We focus on less explored areas of application of fluorescence for tautomerization studies, using porphycene, a porphyrin isomer, as an example. Fluorescence anisotropy techniques allow investigations of self-exchange reactions, where the reactant and product are formally identical.

View Article and Find Full Text PDF

We report on laser-induced fluorescence excitation and dispersed fluorescence spectra of two isomeric compounds: 1,4- and 1,8-diazatriphenylene (1,4- and 1,8-DAT) isolated in supersonic molecular jets, and their 1:1 complexes with protic solvents. We found that the ground and excited state vibronic patterns of bare 1,4-DAT differ significantly from those of 1,8-DAT, and those of the complexes of both isomers. A marked activity of several out-of-plane vibrations in 1,4-DAT and the symptoms of the distortion of the S excited molecule were diagnosed from the vibronic spectra, whereas planar structures were predicted for 1,8-DAT in S and S states.

View Article and Find Full Text PDF

In this feature article, we discuss recent advances in studying ultrafast dynamic and structural aspects of host-guest interactions. Steady-state and time-resolved techniques exploring events from the femto- to nanosecond regime were used to examine the ultrafast photodynamics and subsequent events in selected nanostructures of the formed complexes. These consist of aromatic systems, biologically relevant molecules, and drugs trapped within cyclodextrins (CD) and human serum albumin (HSA) protein pockets.

View Article and Find Full Text PDF

The photophysics of N,N'-bis(salicylidene)-p-phenylenediamine (BSP) is analyzed both theoretically and experimentally. The alternative intramolecular proton-transfer reactions lead to three different tautomers. We performed DFT and TDDFT calculations to analyze the topography of the reactions connecting the three tautomers.

View Article and Find Full Text PDF
Article Synopsis
  • * In neutral water, the main form of Lc is neutral, but when it interacts with HSA, the anionic form becomes more prominent, leading to increased absorption at 450 nm due to strong complex formation.
  • * The study found different fluorescence lifetimes for Lc depending on its form and interaction partner: HSA complexes had two lifetimes indicating varied interactions, while β-CD only complexed the neutral form, creating implications for drug
View Article and Find Full Text PDF

Stationary and time-resolved studies of 9,10,19,20-tetramethylporphycene and 9,10,19,20-tetra-n-propylporphycene in condensed phases reveal the coexistence of trans and cis tautomeric forms. Two cis configurations, cis-1 and cis-2, play a crucial role in understanding the excited-state deactivation and tautomer conversion dynamics. The trans-trans tautomerization, involving intramolecular transfer of two hydrogen atoms, is extremely rapid (k ≥ 10(13) s(-1)), both in the ground and lowest electronically excited states.

View Article and Find Full Text PDF

The normal and anion structures of salicylaldehyde azine (SAA) in solvents of different viscosities and polarities have been studied by means of femto- to nanosecond time-resolved emission techniques. In the normal form, an excited-state intramolecular proton-transfer (ESIPT) reaction takes place with a time constant shorter than 80 fs to produce an excited keto-type tautomer in which intramolecular-vibrational energy redistribution and vibrational cooling occur in 100 fs to 2 ps. The viscosity-dependent emission decay in the red part of the spectrum with 5-11 ps reflects a twisting motion leading to rotamers of these keto-type structures, most probably of (n,pi*) nature.

View Article and Find Full Text PDF

A model for the radiationless deactivation of porphycenes has been proposed based on the theoretical prediction that the lowest electronic state of one of the cis tautomeric forms corresponds to an open-shell nonplanar structure. The radiationless channel is provided by crossing of the potential energy surfaces of the ground and lowest excited states along the hydrogen-transfer coordinate. The model explains the large dependence of fluorescence of several porphycenes on viscosity.

View Article and Find Full Text PDF

We report on studies of femtosecond dynamics of a nonsteroidal anti-inflammatory drug, piroxicam (1), in water at three different pHs and for comparison in two aprotic solvents. An ultrafast excited-state proton-transfer (ESIPT) process takes place in neutral and cationic enol-type structures. Femtosecond emission and transient absorption experiments show that this reaction is barrierless, and the proton-transferred keto tautomer is formed in less than 100 fs in both organic solvents and acidic water.

View Article and Find Full Text PDF

We report on steady-state and ps-time-resolved emission studies of piroxicam (1) drug within human serum albumin (HSA) protein in cyclodextrin and in neat solvents. The steady-state results indicate that 1 binds to HSA protein and that two binding sites are involved. The fluorescence decays corresponding to site I in subdomain IIA and to site II in subdomain IIIA have time constants of approximately 60 ps and approximately 360 ps, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates the dynamics of 7-hydroxyquinoline (7HQ) within reverse micelles, focusing on how varying water amounts affect its behavior.
  • The researchers found three distinct regions showing how water molecules behave and participate in proton-transfer reactions within the micelles, aligning with changes in calculated water density.
  • The analysis highlights the impact of hydrogen bond dynamics and micelle confinement on water's structure and relaxation times, emphasizing the relationship between water packing and proton-transfer processes.
View Article and Find Full Text PDF

A procedure that enables determining the reaction rate from the analysis of fluorescence anisotropy is described and applied to the investigation of double hydrogen transfer between inner-cavity nitrogen atoms in electronically excited porphycene. Tautomerization proceeds as a thermally activated synchronous double hydrogen tunneling. The barrier to the reaction is dynamically modulated by a vibration that simultaneously changes the strength of two intramolecular hydrogen bonds.

View Article and Find Full Text PDF