In this work, we report the set-up and results of the Liver Tumor Segmentation Benchmark (LiTS), which was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 and the International Conferences on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2017 and 2018. The image dataset is diverse and contains primary and secondary tumors with varied sizes and appearances with various lesion-to-background levels (hyper-/hypo-dense), created in collaboration with seven hospitals and research institutions. Seventy-five submitted liver and liver tumor segmentation algorithms were trained on a set of 131 computed tomography (CT) volumes and were tested on 70 unseen test images acquired from different patients.
View Article and Find Full Text PDFIn this paper, we introduce a simple, yet powerful pipeline for medical image segmentation that combines Fully Convolutional Networks (FCNs) with Fully Convolutional Residual Networks (FC-ResNets). We propose and examine a design that takes particular advantage of recent advances in the understanding of both Convolutional Neural Networks as well as ResNets. Our approach focuses upon the importance of a trainable pre-processing when using FC-ResNets and we show that a low-capacity FCN model can serve as a pre-processor to normalize medical input data.
View Article and Find Full Text PDFDeep learning is a class of machine learning methods that are gaining success and attracting interest in many domains, including computer vision, speech recognition, natural language processing, and playing games. Deep learning methods produce a mapping from raw inputs to desired outputs (eg, image classes). Unlike traditional machine learning methods, which require hand-engineered feature extraction from inputs, deep learning methods learn these features directly from data.
View Article and Find Full Text PDFColorectal cancer (CRC) is the third cause of cancer death worldwide. Currently, the standard approach to reduce CRC-related mortality is to perform regular screening in search for polyps and colonoscopy is the screening tool of choice. The main limitations of this screening procedure are polyp miss rate and the inability to perform visual assessment of polyp malignancy.
View Article and Find Full Text PDFThe interpretation and analysis of wireless capsule endoscopy (WCE) recordings is a complex task which requires sophisticated computer aided decision (CAD) systems to help physicians with video screening and, finally, with the diagnosis. Most CAD systems used in capsule endoscopy share a common system design, but use very different image and video representations. As a result, each time a new clinical application of WCE appears, a new CAD system has to be designed from the scratch.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
September 2015
We have previously developed an original method to evaluate small bowel motor function based on computer vision analysis of endoluminal images obtained by capsule endoscopy. Our aim was to demonstrate intestinal motor abnormalities in patients with functional bowel disorders by endoluminal vision analysis. Patients with functional bowel disorders (n = 205) and healthy subjects (n = 136) ingested the endoscopic capsule (Pillcam-SB2, Given-Imaging) after overnight fast and 45 min after gastric exit of the capsule a liquid meal (300 ml, 1 kcal/ml) was administered.
View Article and Find Full Text PDFWireless Capsule Endoscopy (WCE) provides a new perspective of the small intestine, since it enables, for the first time, visualization of the entire organ. However, the long visual video analysis time, due to the large number of data in a single WCE study, was an important factor impeding the widespread use of the capsule as a tool for intestinal abnormalities detection. Therefore, the introduction of WCE triggered a new field for the application of computational methods, and in particular, of computer vision.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
November 2014
Intestinal contractions are one of the most important events to diagnose motility pathologies of the small intestine. When visualized by wireless capsule endoscopy (WCE), the sequence of frames that represents a contraction is characterized by a clear wrinkle structure in the central frames that corresponds to the folding of the intestinal wall. In this paper, we present a new method to robustly detect wrinkle frames in full WCE videos by using a new mid-level image descriptor that is based on a centrality measure proposed for graphs.
View Article and Find Full Text PDFIEEE Trans Inf Technol Biomed
November 2012
Wireless capsule endoscopy (WCE) is a device that allows the direct visualization of gastrointestinal tract with minimal discomfort for the patient, but at the price of a large amount of time for screening. In order to reduce this time, several works have proposed to automatically remove all the frames showing intestinal content. These methods label frames as {intestinal content- clear} without discriminating between types of content (with different physiological meaning) or the portion of image covered.
View Article and Find Full Text PDFThe Wireless Capsule Endoscopy (WCE) technology allows the visualization of the whole small intestine tract. Since the capsule is freely moving, mainly by the means of peristalsis, the data acquired during the study gives a lot of information about the intestinal motility. However, due to: (1) huge amount of frames, (2) complex intestinal scene appearance and (3) intestinal dynamics that make difficult the visualization of the small intestine physiological phenomena, the analysis of the WCE data requires computer-aided systems to speed up the analysis.
View Article and Find Full Text PDF