Recurrent neural networks are often employed in the cognitive science community to process symbol sequences that represent various natural language structures. The aim is to study possible neural mechanisms of language processing and aid in development of artificial language processing systems. We used data sets containing recursive linguistic structures and trained the Elman simple recurrent network (SRN) for the next-symbol prediction task.
View Article and Find Full Text PDFIn this paper, we elaborate upon the claim that clustering in the recurrent layer of recurrent neural networks (RNNs) reflects meaningful information processing states even prior to training [1], [2]. By concentrating on activation clusters in RNNs, while not throwing away the continuous state space network dynamics, we extract predictive models that we call neural prediction machines (NPMs). When RNNs with sigmoid activation functions are initialized with small weights (a common technique in the RNN community), the clusters of recurrent activations emerging prior to training are indeed meaningful and correspond to Markov prediction contexts.
View Article and Find Full Text PDF