When a suspension of charged nanoparticles is in contact with a like-charged water-solid interface, next to this interface a particle-free layer is formed. The present study provides reliable measurements of the thickness of this particle-free layer with three different techniques, namely optical reflectivity, quartz crystal microbalance (QCM), and direct force measurements with atomic force microscopy (AFM). Suspensions of negatively charged nanoparticles of different size and type are investigated.
View Article and Find Full Text PDFDirect force measurements between negatively charged silica microparticles are carried out in suspensions of like-charged nanoparticles with atomic force microscopy (AFM). In agreement with previous studies, oscillatory force profiles are observed at larger separation distances. At smaller distances, however, soft and strongly repulsive forces are present.
View Article and Find Full Text PDFForces between negatively charged micron-sized silica particles were measured in aqueous solutions of cationic polyelectrolytes with an atomic force microscope (AFM). In these oppositely charged systems, damped oscillatory force profiles were systematically observed in systems at higher polyelectrolyte concentrations, typically around few g L-1. The wavelength of these oscillations is decreasing with increasing concentration.
View Article and Find Full Text PDFExperimentally determined heteroaggregation rates between charged and neutral colloidal particles are reported for the first time. Different positively and negatively charged polystyrene latex particles are investigated. The neutral particles are obtained through adsorption of an appropriate amount of oppositely charged additives, such as aliphatic oligoamines, iron cyanide complexes, or alkyl sulfates.
View Article and Find Full Text PDFStructuring of aqueous suspensions of colloidal silica nanoparticles near an isolated planar silica-water interface is studied by specular neutron reflectivity. The reflectivity data clearly show that the suspensions develop a damped, oscillatory concentration profile in the normal direction to the interface. The wavelengths of these oscillations agree well with those independently determined by direct force measurements in the slit-geometry.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2020
Homoaggregation and heteroaggregation involving amidine and sulfate latex particles in the presence of the anionic surfactant octyl sulfate (OS) is studied by light scattering. This surfactant causes a charge reversal of the amidine particles. This reversal induces a rapid homoaggregation near the charge reversal point.
View Article and Find Full Text PDFAdv Colloid Interface Sci
January 2020
This review addresses experimental findings obtained with direct force measurements between two similar or dissimilar solid surfaces in aqueous electrolyte solutions. Interpretation of these measurements is mainly put forward in terms of the classical theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO). This theory invokes a superposition of attractive van der Waals forces and repulsive double layer forces.
View Article and Find Full Text PDFChimia (Aarau)
February 2019
This article discusses the possibilities offered by modern atomic force microscopes (AFMs) with ultra-small cantilevers to perform imaging of single adsorbed polyelectrolytes in aqueous solutions. We demonstrate that such AFM techniques permit high quality images of single polyelectrolyte molecules to be obtained. These images can then be used to qualitatively address differences in the adsorbed conformations for different polyelectrolyte architectures.
View Article and Find Full Text PDFDouble-layer forces acting between micron-sized silica particles are measured with the atomic force microscope in solutions of symmetric, multivalent electrolytes. In particular, the 2:2 electrolytes, CuSO and MgSO, and the 3:3 electrolyte LaFe(CN) were investigated. For the multivalent electrolytes, the measured decay lengths are substantially larger than the ones expected on the basis of simple Debye-Hückel (DH) theory.
View Article and Find Full Text PDFAqueous suspensions of amidine latex (AL) and sulfate latex (SL) particles containing sodium tetraphenylborate and NaCl are studied with electrokinetic and time-resolved light-scattering techniques. In monovalent salt solutions, AL is positively charged, whereas SL is negatively charged. Electrophoretic mobility measurements demonstrate that adsorption of tetraphenylborate anions leads to a charge reversal of AL particles.
View Article and Find Full Text PDFElectrophoretic mobility and time resolved light scattering are used to measure the effect on charging and aggregation of amidine and sulfate latex particles of different oxyanions namely, phosphate, arsenate, sulfate, and selenate. In the case of negatively charged sulfate latex particles oxyanions represent the coions, while they represent counterions in the case of the positively charged amidine latex. Repulsive interaction between the sulfate latex surface and the coions results in weak ion specific effects on the charging and aggregation.
View Article and Find Full Text PDFDirect force measurements involving amidine latex (AL) and sulfate latex (SL) particles in aqueous solutions containing multivalent ferrocyanide anions are presented. These measurements feature three different pairs of particles, namely SL-SL, AL-SL, and AL-AL. The force profiles are quantitatively interpreted in terms of the theory by Derjaguin, Landau, Verwey, and Overbeek (DLVO) that is combined with a short-ranged exponential attraction.
View Article and Find Full Text PDFWe study the influence of receptor-ligand interactions on the force response of single polymer chains theoretically. The extension of the chain is modeled in terms of freely jointed chain or elastic freely jointed chain (EFJC) models. The situation involving noninteracting bonds is solved exactly, while effects of interactions are treated within a mean-field approximation.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2017
Direct force measurements between negatively charged colloidal particles were carried out using an atomic force microscope (AFM) in aqueous solutions containing monovalent organic cations, namely tetraphenylarsonium (PhAs), 1-hexyl-3-methylimidazolium (HMIM), and 1-octyl-3-methylimidazolium (OMIM). These ions adsorb to the particle surface, and induce a charge reversal. The forces become attractive at the charge neutralization point, but they are stronger than van der Waals forces.
View Article and Find Full Text PDFTime-resolved dynamic light scattering is used to measure absolute heteroaggregation rate coefficients and the corresponding stability ratios for heteroaggregation between amidine and sulfate latex particles. These measurements are complemented by the respective quantities for the homoaggregation of the two systems and electrophoresis. Based on the latter measurements, the stability ratios are calculated using Derjaguin-Landau-Verwey-Overbeek (DLVO) theory.
View Article and Find Full Text PDFThe present article offers an overview on the use of atomic force microscopy (AFM) to characterize the nanomechanical properties of polymers. AFM imaging reveals the conformations of polymer molecules at solid- liquid interfaces. In particular, for polyelectrolytes, the effect of ionic strength on the conformations of molecules can be studied.
View Article and Find Full Text PDFThe Schulze-Hardy rule suggests a strong dependence of the critical coagulation concentration (CCC) on the ionic valence. This rule is addressed theoretically and confronted with recent experimental results. The commonly presented derivation of this rule assumes symmetric electrolytes and highly charged particles.
View Article and Find Full Text PDFCis-to-trans isomerization of carbon-carbon double bonds can be induced by the application of mechanical force. Using single molecule force spectroscopy by means of atomic force microscopy (AFM) we pulled polymer molecules which contained cis double bonds in the backbone. In the force versus extension profiles of these polymers, a sudden extension increase is observed which is due to the conversion of shorter cis isomers into longer trans isomers.
View Article and Find Full Text PDFCorrection for 'The persistence length of adsorbed dendronized polymers' by Lucie Grebikova, et al., Nanoscale, 2016, 8, 13498-13506.
View Article and Find Full Text PDFDirect force measurements between negatively charged silica particles in the presence of a like-charged strong polyelectrolyte were carried out with an atomic force microscope. The force profiles can be quantitatively interpreted as a superposition of depletion and double-layer forces. The depletion forces are modeled with a damped oscillatory profile, while the double-layer forces with the mean-field Poisson-Boltzmann theory for a strongly asymmetric electrolyte, whereby an effective valence must be assigned to the polyelectrolyte.
View Article and Find Full Text PDFForce profiles between pairs of silica particles in concentrated aqueous solutions of a monovalent salt are measured using atomic force microscopy (AFM). Under such conditions, the double layer forces are negligible, and the profiles are dominated by van der Waals dispersion forces at larger distances. Heat treatment of the particles strongly influences the strength of dispersion forces.
View Article and Find Full Text PDFThe persistence length of cationic dendronized polymers adsorbed onto oppositely charged substrates was studied by atomic force microscopy (AFM) and quantitative image analysis. One can find that a decrease in the ionic strength leads to an increase of the persistence length, but the nature of the substrate and of the generation of the side dendrons influence the persistence length substantially. The strongest effects as the ionic strength is being changed are observed for the fourth generation polymer adsorbed on mica, which is a hydrophilic and highly charged substrate.
View Article and Find Full Text PDFForces between negatively charged silica particles in aqueous electrolyte solutions were measured with the colloidal probe technique based on the atomic force microscope (AFM). The present study focuses on the comparison of monovalent and multivalent counterions, namely K(+), Mg(2+), and La(3+). The force profiles can be well described with the theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO) down to distances of about 4 nm.
View Article and Find Full Text PDF