Publications by authors named "Michal Amitsur"

The optional Escherichia coli restriction tRNase PrrC represents a family of potential antiviral devices widespread among bacteria. PrrC comprises a functional C-domain of unknown structure and regulatory ABC/ATPase-like N-domain. The possible involvement of a C-domain sequence in tRNA(Lys) recognition was investigated using a matching end-protected 11-meric peptide.

View Article and Find Full Text PDF

The tRNA(Lys) anticodon nuclease PrrC is associated in latent form with the type Ic DNA restriction endonuclease EcoprrI and activated by a phage T4-encoded inhibitor of EcoprrI. The activation also requires the hydrolysis of GTP and presence of dTTP and is inhibited by ATP. The N-proximal NTPase domain of PrrC has been implicated in relaying the activating signal to a C-proximal anticodon nuclease site by interacting with the requisite nucleotide cofactors [Amitsur et al.

View Article and Find Full Text PDF

The bacterial tRNALys-specific anticodon nuclease is known as a phage T4 exclusion system. In the uninfected host cell anticodon nuclease is kept latent due to the association of its core protein PrrC with the DNA restriction-modification endonuclease EcoprrI. Stp, the T4-encoded peptide inhibitor of EcoprrI activates the latent enzyme.

View Article and Find Full Text PDF

The bacterial tRNA(Lys)-specific PrrC-anticodon nuclease efficiently cleaved an anticodon stem-loop (ASL) oligoribonucleotide containing the natural modified bases, suggesting this region harbors the specificity determinants. Assays of ASL analogs indicated that the 6-threonylcarbamoyl adenosine modification (t(6)A37) enhances the reactivity. The side chain of the modified wobble base 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U34) has a weaker positive effect depending on the context of other modifications.

View Article and Find Full Text PDF