Publications by authors named "Michal Ackermann"

This article is focused on a case study of the topology optimisation of a bike stem manufactured by selective laser melting (SLM) additive technology. Topology optimisation was used as a design tool to model a part with less material used for transferring specific loads than the conventional method. For topology optimisation, Siemens NX 12 software was used with loads defined from the ISO 4210-5 standard.

View Article and Find Full Text PDF

This article deals with a comprehensive study of the processing and mechanical properties of the ceramic material Al2O3 on Fused Filament Fabrication technology (FFF). It describes the basic input analyses of the material, such as TGA, FTIR, and MVR. These analyses enabled the design and testing of process parameters for the 3D printing of parts.

View Article and Find Full Text PDF

The correct setting of laser beam parameters and scanning strategy for Selective Laser Melting (SLM) technology is a demanding process. Usually, numerous experimental procedures must be taken before the final strategy can be applied. The presented work deals with SLM technology and the impact of its technological parameters on the porosity and hardness of AISI H13 tool steel.

View Article and Find Full Text PDF

Multi jet fusion (MJF) technology has proven its significance in recent years as this technology has continually increased its market share. Recently, polypropylene (PP) was introduced by Hewlett-Packard for the given technology. To our knowledge, little is known about the mechanical properties of polypropylene processed by MJF technology.

View Article and Find Full Text PDF

The study involved the electrospinning of the copolymer poly(L-lactide-co-ε-caprolactone) (PLCL) into tubular grafts. The subsequent material characterization, including micro-computed tomography analysis, revealed a level of porosity of around 70%, with pore sizes of 9.34 ± 0.

View Article and Find Full Text PDF

The study investigates the potential for producing medical components via Selective Laser Melting technology (SLM). The material tested consisted of the biocompatible titanium alloy Ti6Al4V. The research involved the testing of laboratory specimens produced using SLM technology both in vitro and for surface roughness.

View Article and Find Full Text PDF