Publications by authors named "Michail O Samoilov"

Our previous study demonstrated that preconditioning by 3-times repetitive mild hypoxia significantly augmented expression of mitochondrial thioredoxin-2 (Trx-2) at 3 h after subsequent acute severe hypoxia in rat hippocampus. However, it was unclear whether this augmentation was due to build up of Trx-2 by mild hypoxia before severe hypoxia or by modification of reaction to severe hypoxia itself. To answer on this question we study the expression level during and after preconditioning without subsequent severe hypoxia.

View Article and Find Full Text PDF

The patterns of expression of the Bcl-2, Bax, and Bcl-xL proteins were examined immunocytochemically in rat hippocampus and neocortex after severe hypobaric hypoxia (180 Torr for 3 h) and severe hypoxia preconditioned by intermittent mild hypoxia (360 Torr for 2 h daily, for 3 consecutive days, 24 h prior to severe hypoxia). As revealed by TUNEL assay, severe hypobaric hypoxia produced extensive apoptotic damage to the neurons of hippocampal CA1-CA4 and the neocortex but not the dentate gyrus granule cells. Remarkable posthypoxic up-regulation of Bax expression maximal at 24 h was detected in the CA1-CA4 areas of hippocampus and neocortex 3-72 h after severe hypoxia.

View Article and Find Full Text PDF

Severe hypoxia results in functional and structural injury of the brain. A preconditioning with repetitive episodes of mild hypoxia considerably ameliorates neuronal resistance to subsequent severe hypoxia. Activation of endogenous antioxidants including Cu, Zn-depending superoxide dismutase (Cu, Zn-SOD) (EC.

View Article and Find Full Text PDF

The aim of this work was to study effects of mild preconditioning hypobaric hypoxia (380 Torr for 2 h, repeated 3 or 6 times spaced at 24 h) on brain NGFI-A immunoreactivity and passive avoidance (PA) behavior in rats exposed to severe hypoxia (160 Torr for 3 h). Severe hypobaric hypoxia produced extensive neuronal loss in hippocampal CA1, while the preceding hypoxic preconditioning had clear protective effect on neuronal viability of vulnerable hippocampal cells. Besides, the hypoxic preconditioning prevented impairment of acquisition and retention of PA caused by severe hypoxia.

View Article and Find Full Text PDF

Induction of endogenous antioxidants is one of the key molecular mechanisms of cell resistance to hypoxia/ischemia. The effect of severe hypoxia on the expression of cytosolic antioxidant thioredoxin-1 (Trx) in hippocampus and neocortex was studied in preconditioned and non-preconditioned rats. The preconditioning consisted of three trials of mild hypobaric hypoxia (360 Torr, 2 h) spaced at 24 h.

View Article and Find Full Text PDF

The impact of severe hypoxia and preconditioning on the expression of the mitochondrial antioxidant thioredoxin-2 (Trx-2) in rat hippocampus (CA1, CA2, CA3 fields, and dentate gyrus) and neocortex was studied by immunocytochemistry. The preconditioning consisted of three trials of mild hypobaric hypoxia (360 Torr, 2 hr) spaced at 24 hr. The last trial was followed by severe hypobaric hypoxia (180 Torr, 3 hr) 24 hr later.

View Article and Find Full Text PDF