The origin of Earth's volatile elements is highly debated. Comparing the chalcogen isotope ratios in the bulk silicate Earth (BSE) to those of its possible building blocks, chondritic meteorites, allows constraints on the origin of Earth's volatiles; however, these comparisons are complicated by potential isotopic fractionation during protoplanetary differentiation, which largely remains poorly understood. Using first-principles calculations, we find that core-mantle differentiation does not notably fractionate selenium and tellurium isotopes, while equilibrium evaporation from early planetesimals would enrich selenium and tellurium in heavy isotopes in the BSE.
View Article and Find Full Text PDFRecent advances in high-precision potassium (K) isotopic analysis have found considerable isotopic variation in rock samples of the Earth's continental and oceanic crusts; however, it is still uncertain whether there is any resolvable inter-mineral and mineral-melt K isotopic fractionation during igneous and metamorphic processes. Here, we report K isotope compositions of mineral separates from three extremely well preserved igneous rocks (intrusive/extrusive and mafic/intermediate/felsic) in order to investigate possible inter-mineral and mineral-melt K isotopic fractionation at magmatic temperatures. For the first time, we found large inter-mineral fractionation of K isotopes in natural samples (up to 1.
View Article and Find Full Text PDFProg Earth Planet Sci
November 2021
Unlabelled: We report on the mineralogy, petrography, and O and Al-Mg isotopic systematics of secondary mineralization in the metasomatically altered igneous Ca,Al-rich inclusions (CAIs) [compact type A (CTA), B1, B2, forsterite-bearing B (FoB), and C] from the CV3 carbonaceous chondrite Allende. This alteration affected mainly melilite, and to a lesser degree anorthite, and resulted in the formation of a variety of secondary minerals, including adrianite, Al-diopside, andradite, anorthite, calcite, celsian, clintonite, corundum, dmisteinbergite, ferroan olivine, ferroan monticellite, ferroan Al-diopside, forsterite, grossular, heazlewoodite, hedenbergite, hutcheonite, kushiroite, margarite, monticellite, Na-melilite, nepheline, pentlandite, pyrrhotite, sodalite, spinel, tilleyite, wadalite, and wollastonite. The secondary mineral assemblages are mainly defined by chemical compositions of the primary melilite replaced and elements introduced by an aqueous fluid.
View Article and Find Full Text PDFThe radii and orbital periods of 4,000+ confirmed/candidate exoplanets have been precisely measured by the mission. The radii show a bimodal distribution, with two peaks corresponding to smaller planets (likely rocky) and larger intermediate-size planets, respectively. While only the masses of the planets orbiting the brightest stars can be determined by ground-based spectroscopic observations, these observations allow calculation of their average densities placing constraints on the bulk compositions and internal structures.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2018
Calcium-aluminum-rich inclusions (CAIs) and amoeboid olivine aggregates (AOAs), a refractory component of chondritic meteorites, formed in a high-temperature region of the protoplanetary disk characterized by approximately solar chemical and oxygen isotopic (ΔO ∼ -24‰) compositions, most likely near the protosun. Here we describe a O-rich (ΔO ∼ -22 ± 2‰) AOA from the carbonaceous Renazzo-type (CR) chondrite Yamato-793261 containing both () an ultrarefractory CAI and () forsterite, low-Ca pyroxene, and silica, indicating formation by gas-solid reactions over a wide temperature range from ∼1,800 to ∼1,150 K. This AOA provides direct evidence for gas-solid condensation of silica in a CAI/AOA-forming region.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2013
One explanation of the abrupt cooling episode known as the Younger Dryas (YD) is a cosmic impact or airburst at the YD boundary (YDB) that triggered cooling and resulted in other calamities, including the disappearance of the Clovis culture and the extinction of many large mammal species. We tested the YDB impact hypothesis by analyzing ice samples from the Greenland Ice Sheet Project 2 (GISP2) ice core across the Bølling-Allerød/YD boundary for major and trace elements. We found a large Pt anomaly at the YDB, not accompanied by a prominent Ir anomaly, with the Pt/Ir ratios at the Pt peak exceeding those in known terrestrial and extraterrestrial materials.
View Article and Find Full Text PDFMinerals on earth whose crystalline order has been reduced by radioactive decay of contained atoms are termed "metamict." They are rare and few because in most crystalline solids, atoms and vacancies are relatively mobile at terrestrial temperatures, and radiation damage tends to be self-annealing. This is not the case in the extreme cold of deep space.
View Article and Find Full Text PDFMultiple chondritic meteorite fragments have been found in two sedimentary rock samples from an end-Permian bed at Graphite Peak in Antarctica. The Ni/Fe, Co/Ni, and P/Fe ratios in metal grains; the Fe/Mg and Mn/Fe ratios in olivine and pyroxene; and the chemistry of Fe-, Ni-, P-, and S-bearing oxide in the meteorite fragments are typical of CM-type chondritic meteorites. In one sample, the meteoritic fragments are accompanied by more abundant discrete metal grains, which are also found in an end-Permian bed at Meishan, southern China.
View Article and Find Full Text PDF