Introduction: The apolipoprotein E gene (APOE) is an established central player in the pathogenesis of Alzheimer's disease (AD), with distinct apoE isoforms exerting diverse effects. apoE influences not only amyloid-beta and tau pathologies but also lipid and energy metabolism, neuroinflammation, cerebral vascular health, and sex-dependent disease manifestations. Furthermore, ancestral background may significantly impact the link between APOE and AD, underscoring the need for more inclusive research.
View Article and Find Full Text PDFA significant progressive decline in beta-carotene (βC) levels in the brain is associated with cognitive impairment and a higher prevalence of Alzheimer's disease (AD). In this study, we investigated whether the administration of 9-cis beta-carotene (9CBC)-rich powder of the alga Dunaliella bardawil, the best-known source of βC in nature, inhibits the development of AD-like neuropathology and cognitive deficits. We demonstrated that in 3 AD mouse models, Tg2576, 5xFAD, and apoE4, 9CBC treatment improved long- and short-term memory, decreased neuroinflammation, and reduced the prevalence of β-amyloid plaques and tau hyperphosphorylation.
View Article and Find Full Text PDFBackground: Apolipoprotein E4 (APOE4) is the most prevalent genetic risk factor of Alzheimer's disease. Several studies suggest that APOE4 binding to its receptors is associated with their internalization and accumulation in intracellular compartments. Importantly, this phenomenon also occurs with other, non-ApoE receptors.
View Article and Find Full Text PDFAlzheimer's disease (AD) is characterized by toxic protein accumulation in the brain. Ubiquitination is essential for protein clearance in cells, making altered ubiquitin signaling crucial in AD development. A defective variant, ubiquitin B + 1 (UBB), created by a non-hereditary RNA frameshift mutation, is found in all AD patient brains post-mortem.
View Article and Find Full Text PDFImportance: Preclinical studies suggest that inhibition of single-stranded DNA repair by ataxia telangiectasia and Rad3 (ATR) may enhance the cytotoxicity of cisplatin, gemcitabine, and other chemotherapeutic agents. Cisplatin with gemcitabine remains the standard up-front therapy for treatment in patients with metastatic urothelial cancer.
Objective: To determine whether the use of the selective ATR inhibitor, berzosertib, could augment the activity of cisplatin with gemcitabine.
APOE4 is a major risk factor for sporadic Alzheimer's disease; however, it is unclear how it exerts its pathological effects. Others and we have previously shown that autophagy is impaired in APOE4 compared to APOE3 astrocytes, and demonstrated differences in the expression of mitochondrial dynamics proteins in brains of APOE3 and APOE4 transgenic mice. Here, we investigated the effect of APOE4 expression on several aspects of mitochondrial function and network dynamics, including fusion, fission, and mitophagy, specifically in astrocytes.
View Article and Find Full Text PDFApolipoprotein E () ε4 gene allele and type 2 diabetes mellitus (T2DM) are prime risk factors for Alzheimer's disease (AD). Despite evidence linking T2DM and apoE4, the mechanism underlying their interaction is yet to be determined. In the present study, we employed a model of -targeted replacement mice and high-fat diet (HFD)-induced insulin resistance to investigate diabetic mechanisms associated with apoE4 pathology and the extent to which they are driven by peripheral and central processes.
View Article and Find Full Text PDFThe ε4 allele is the strongest genetic risk factor for late-onset Alzheimer's disease (AD). ApoE protein aggregation plays a central role in AD pathology, including the accumulation of β-amyloid (Aβ). Lipid-poor ApoE4 protein is prone to aggregate and lipidating ApoE4 protects it from aggregation.
View Article and Find Full Text PDFThe E4 allele of apolipoprotein (apoE4) is the primary genetic risk factor for late onset Alzheimer's disease (AD), yet the exact manner in which apoE4 leads to the development of AD is undetermined. Human and animal studies report that apoE4-related memory deficits appear earlier than the AD clinical manifestation, thus suggesting the existence of early, pre-pathological, apoE4 impairments that may later lead to AD onset. While current research regards the hippocampus as the initial and primary effected locus by apoE4, we presently investigate the possibility that apoE4 innately impairs any brain area that requires synaptic plasticity.
View Article and Find Full Text PDFThe ɛ4 allele of apolipoprotein E (apoE4) is the most prevalent genetic risk factor for Alzheimer's disease. ApoE4 is also associated with poor recovery and functional outcome following traumatic brain injury. This study examined the effects of the apoE genotype on brain pathology following acute injury, induced by penetration of a needle through the cortex and hippocampus, at 3 and 14 days following the injury in female apoE3 and apoE4 α-synuclein-deficient targeted replacement (TR) mice.
View Article and Find Full Text PDFThis study examined the effects of apolipoprotein E4 (APOE4), the most prevalent genetic risk factor for Alzheimer's disease (AD), on proteins involved in mitochondrial dynamics and autophagy, in the hippocampus of targeted replacement mice. Immunohistochemical measurements revealed that the levels of the mitochondrial fusion-mediating protein, MFN1, were higher, whereas those of corresponding fission-regulating protein, DRP-1, were lower in the hippocampus of ApoE4 mice than in the corresponding ApoE3 mice, indicating that APOE4 is associated with increased mitochondrial fusion and decreased fission. A similar ApoE4-driven decrease in DRP-1 was also observed in AD brains.
View Article and Find Full Text PDFBackground: The growing body of evidence indicating the heterogeneity of Alzheimer's disease (AD), coupled with disappointing clinical studies directed at a fit-for-all therapy, suggest that the development of a single magic cure suitable for all cases may not be possible. This calls for a shift in paradigm where targeted treatment is developed for specific AD subpopulations that share distinct genetic or pathological properties. Apolipoprotein E4 (apoE4), the most prevalent genetic risk factor of AD, is expressed in more than half of AD patients and is thus an important possible AD therapeutic target.
View Article and Find Full Text PDFCurr Alzheimer Res
August 2020
Background: Alzheimer's Disease (AD) is associated with impairments in key brain Mitogen- Activated Protein Kinase (MAPK) signaling cascades including the p38, c-Jun N-terminal kinase (JNK), ERK and Akt pathways. Apolipoprotein E4 (ApoE4) is the most prevalent genetic risk factor of AD.
Objectives: To investigate the extent to which the MAPK signaling pathway plays a role in mediating the pathological effects of apoE4 and can be reversed by experimental manipulations.
The auditory system of the cricket, Gryllus bimaculatus, demonstrates an unusual amount of anatomical plasticity in response to injury, even in adults. Unilateral removal of the ear causes deafferented auditory neurons in the prothoracic ganglion to sprout dendrites across the midline, a boundary they typically respect, and become synaptically connected to the auditory afferents of the contralateral ear. The molecular basis of this sprouting and novel synaptogenesis in the adult is not understood.
View Article and Find Full Text PDFIntroduction: Alzheimer's disease (AD) and synucleinopathies share common pathological mechanisms. Apolipoprotein E4 (apoE4), the most prevalent genetic risk factor for AD, also increases the risk for dementia in pure synucleinopathies. We presently examined the effects of α-synuclein deficiency (α-syn-/-) and sex on apoE4-driven pathologies.
View Article and Find Full Text PDFIn 2017, there is no adjuvant systemic therapy proven to increase overall survival in non-metastatic renal cell carcinoma (RCC). The anti-PD-1 antibody nivolumab improves overall survival in metastatic treatment refractory RCC and is generally tolerable. Mouse solid tumor models have revealed a benefit with a short course of neoadjuvant PD-1 blockade compared to adjuvant therapy.
View Article and Find Full Text PDFIn the last decade, it has become obvious that Alzheimer's disease (AD) is closely linked to changes in lipids or lipid metabolism. One of the main pathological hallmarks of AD is amyloid-β (Aβ) deposition. Aβ is derived from sequential proteolytic processing of the amyloid precursor protein (APP).
View Article and Find Full Text PDFApolipoprotein E4 (apoE4), the leading genetic risk factor for Alzheimer's disease (AD), is less lipidated compared to the most common and AD-benign allele, apoE3. We have recently shown that i.p.
View Article and Find Full Text PDFJ Alzheimers Dis
October 2016
The allele ɛ4 of apolipoprotein E (apoE4) is the most prevalent genetic risk factor for Alzheimer's disease (AD) and is therefore a promising therapeutic target. Human and animal model studies suggest that apoE4 is hypolipidated; accordingly, we have previously shown that the retinoid X receptor (RXR) agonist bexarotene upregulates ABCA1, the main apoE-lipidating protein, resulting in increased lipidation of apoE4, and the subsequent reversal of the pathological effects of apoE4, namely: accumulation of Aβ42 and hyperphosphorylated tau, as well as reduction in the levels of synaptic markers and cognitive deficits. Since the RXR system has numerous other targets, it is important to devise the means of activating ABCA1 selectively.
View Article and Find Full Text PDFApolipoprotein E4 (ApoE4), the most prevalent genetic risk factor for Alzheimer's disease (AD), is associated with increased neurodegeneration and vascular impairments. Vascular endothelial growth factor (VEGF), originally described as a key angiogenic factor, has recently been shown to play a crucial role in the nervous system. The objective of this research is to examine the role of VEGF in mediating the apoE4-driven pathologies.
View Article and Find Full Text PDFApolipoprotein E4 (APOE ε4) is the most prevalent genetic risk factor for Alzheimer's disease (AD). Targeted replacement mice that express either APOE ε4 or its AD benign isoform, APOE ε3, are used extensively in behavioral, biochemical, and physiological studies directed at assessing the phenotypic effects of APOE ε4 and at unraveling the mechanisms underlying them. Such experiments often involve pursuing biochemical and behavioral measurements on the same cohort of mice.
View Article and Find Full Text PDFApolipoproteinE4 (apoE4) is the most prevalent genetic risk factor for Alzheimer's disease (AD) and as such is a promising therapeutic target. This study examined the extent to which the pathological effects of apoE4 can be counteracted in vivo utilizing an immunological approach in which anti-apoE4 antibodies are applied peripherally by i.p.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most prevalent form of dementia in elderly. Genetic studies revealed allelic segregation of the apolipoprotein E (ApoE) gene in sporadic AD and in families with higher risk of AD. The mechanisms underlying the pathological effects of ApoE4 are not yet entirely clear.
View Article and Find Full Text PDF