Publications by authors named "Michaelann Tartis"

Blunt and blast impacts occur in civilian and military personnel, resulting in traumatic brain injuries necessitating a complete understanding of damage mechanisms and protective equipment design. However, the inability to monitor in vivo brain deformation and potential harmful cavitation events during collisions limits the investigation of injury mechanisms. To study the cavitation potential, we developed a full-scale human head phantom with features that allow a direct optical and acoustic observation at high frame rates during blunt impacts.

View Article and Find Full Text PDF

To study human traumatic brain injury (TBI) mechanics, a realistic surrogate must be developed for testing in impact experiments. In this data brief, materials used to simulate brain tissue and skull are characterized for application in a full-scale human head phantom. Polyacrylamide hydrogels are implemented as tissue scaffolds and tissue mimics because they are bioinert and tunable.

View Article and Find Full Text PDF
Article Synopsis
  • - Traumatic brain injury (TBI) is a significant health issue for both military and civilian groups, with ongoing challenges in understanding how different types of impacts lead to injuries.
  • - The study introduces the ANGUS phantom, a synthetic brain model made from polyacrylamide gel, designed to simulate human brain properties and improve research on TBI without using animal models.
  • - Mechanical comparisons between the ANGUS phantom and human subjects show that while the phantom accurately mimics responses to certain types of impacts, it falls short in modeling responses to rotational impacts, highlighting areas for further research.
View Article and Find Full Text PDF

Traumatic Brain Injury (TBI) is a significant public health and financial concern that is affecting tens of thousands of people in the United States annually. There were over a million hospital visits related to TBI in 2017. Along with immediate and short-term morbidity from TBI, chronic traumatic encephalopathy (CTE) can have life-altering, chronic morbidity, yet the direct linkage of how head impacts lead to this pathology remains unknown.

View Article and Find Full Text PDF

Introduction: The mechanical response of brain tissue to high-speed forces in the blast and blunt traumatic brain injury is poorly understood. Object-to-object variation and interspecies differences are current limitations in animal and cadaver studies conducted to study damage mechanisms. Biofidelic and transparent tissue simulants allow the use of high-speed optical diagnostics during a blast event, making it possible to observe deformations and damage patterns for comparison to observed injuries seen post-mortem in traumatic brain injury victims.

View Article and Find Full Text PDF

The hydrophobicity and high potency of many therapeutic agents makes them difficult to use effectively in clinical practice. This work focuses on conjugating phospholipid tails (2T) onto podophyllotoxin (P) and its analogue (N) using a linker and characterizing the effects of their incorporation into lipid-based drug delivery vehicles for triggered ultrasound delivery. Differential Scanning Calorimetry results show that successfully synthesized lipophilic prodrugs, 2T-P (~28 % yield) and 2T-N(~26 % yield), incorporate within the lipid membranes of liposomes.

View Article and Find Full Text PDF

Over the last twenty years, many strategies utilizing sol-gel chemistry to integrate biological cells into silica-based materials have been reported. One such strategy, Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition, shows promise as an efficient encapsulation technique due to the ability to vary the silica encapsulation morphology obtained by this process through variation of SG-CViL reaction conditions. In this report, we develop SG-CViL as a tunable, multi-purpose silica encapsulation strategy by investigating the mechanisms governing both silica particle generation and subsequent interaction with phospholipid assemblies (liposomes and living cells).

View Article and Find Full Text PDF

In nature, cells perform a variety of complex functions such as sensing, catalysis, and energy conversion which hold great potential for biotechnological device construction. However, cellular sensitivity to environments necessitates development of bio-nano interfaces which allow integration of cells into devices and maintain their desired functionality. In order to develop such an interface, the use of a novel Sol Generating Chemical Vapor into Liquid (SG-CViL) deposition process for whole cell encapsulation in silica was explored.

View Article and Find Full Text PDF

Dihydropyridopyrazoles are simplified synthetic analogues of podophyllotoxin that can effectively mimic its molecular scaffold and act as potent mitotic spindle poisons in dividing cancer cells. However, despite nanomolar potencies and ease of synthetic preparation, further clinical development of these promising anticancer agents is hampered due to their poor aqueous solubility. In this article, we developed a prodrug strategy that enables incorporation of dihydropyridopyrazoles into liposome bilayers to overcome the solubility issues.

View Article and Find Full Text PDF

In this letter, we present a simple one-step, versatile, scalable chemical vapor deposition (CVD)-based process for the encapsulation and stabilization of a host of single or multicomponent supramolecular assemblies (proteoliposomes, microbubbles, lipid bilayers, and photosynthetic antennae complexes and other biological materials) to form functional hybrid nanobiomaterials. In each case, it is possible (i) to form thin silica layers or gels controllably that enable the preservation of the supramolecular assembly over time and under adverse environmental conditions and (ii) to tune the structure of the silica gels so as to optimize solute accessibility while at the same time preserving functional dynamic properties of the encapsulated phospholipid assembly. The process allows precise temporal and spatial control of silica polymerization kinetics through the control of precursor delivery at room temperature and does not require or produce high concentrations of injurious chemicals that can compromise the function of biomolecular assemblies; it also does not require additives.

View Article and Find Full Text PDF

Interest in ultrasound contrast agents (lipid-shelled microbubbles) as delivery vehicles is increasing; however, the biodistribution of these agents remains uncharacterized, both with and without ultrasound. In this study, an (18)F-labeled lipid ([(18)F]fluorodipalmitin), incorporated in microbubble shells, was used as a dynamic microPET probe for quantitative 90-minute biodistribution measurements in male Fischer 344 rats (n=2). The spleen retained the highest concentration of radioactive lipid at approximately 2.

View Article and Find Full Text PDF

Synthesis of a radiolabeled diglyceride, 3-[(18)F]fluoro-1,2-dipalmitoylglycerol [[(18)F]fluorodipalmitin ([(18)F]FDP)], and its potential as a reagent for radiolabeling long-circulating liposomes were investigated. The incorporation of (18)F into the lipid molecule was accomplished by nucleophilic substitution of the p-toluenesulfonyl moiety with a decay-corrected yield of 43+/-10% (n=12). Radiolabeled, long-circulating polyethylene-glycol-coated liposomes were prepared using a mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, cholesterol, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)-2000] ammonium salt (61:30:9) and [(18)F]FDP with a decay-corrected yield of 70+/-8% (n=4).

View Article and Find Full Text PDF

Drug delivery vehicles that combine ultrasonic and molecular targeting are shown to locally concentrate a drug in a region-of-interest. The drug delivery vehicles, referred to as acoustically active lipospheres (AALs), are microbubbles surrounded by a shell of oil and lipid. In a region limited to the focal area of ultrasound application, circulating AALs are deflected by radiation force to a vessel wall and can subsequently be fragmented.

View Article and Find Full Text PDF