Publications by authors named "Michaela Tolman"

Diversified neurons are essential for sensorimotor function, but whether astrocytes become specialized to optimize circuit performance remains unclear. Large fast α-motor neurons (FαMNs) of spinal cord innervate fast-twitch muscles that generate peak strength. We report that ventral horn astrocytes express the inward-rectifying K channel Kir4.

View Article and Find Full Text PDF

The activation of the N-methyl D-aspartate receptor (NMDAR) is controlled by a glutamate-binding site and a distinct, independently regulated, co-agonist-binding site. In most brain regions, the NMDAR co-agonist is the astrocyte-derived gliotransmitter D-serine. We found that D-serine levels oscillate in mouse hippocampus as a function of wakefulness, in vitro and in vivo.

View Article and Find Full Text PDF

Astrocytes intimately interact with synapses, both morphologically and, as evidenced in the past 20 years, at the functional level. Ultrathin astrocytic processes contact and sometimes enwrap the synaptic elements, sense synaptic transmission and shape or alter the synaptic signal by releasing signalling molecules. Yet, the consequences of such interactions in terms of information processing in the brain remain very elusive.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disease in which the majority of upper and lower motor neurons are degenerated. Despite intensive efforts to identify drug targets and develop neuroprotective strategies, effective therapeutics for ALS remains unavailable. The identification and characterization of novel targets and pathways remain crucial in the development of ALS therapeutics.

View Article and Find Full Text PDF

Functional maturation of astroglia is characterized by the development of a unique, ramified morphology and the induction of important functional proteins, such as glutamate transporter GLT1. Although pathways regulating the early fate specification of astroglia have been characterized, mechanisms regulating postnatal maturation of astroglia remain essentially unknown. Here we used a new in vivo approach to illustrate and quantitatively analyze developmental arborization of astroglial processes.

View Article and Find Full Text PDF