Publications by authors named "Michaela Stanton"

Background: Hyperphosphorylation of microtubule-associated protein tau is a distinct feature of neurofibrillary tangles (NFTs) that are the hallmark of neurodegenerative tauopathies. O-GlcNAcylation is a lesser known post-translational modification of tau that involves the addition of N-acetylglucosamine onto serine and threonine residues. Inhibition of O-GlcNAcase (OGA), the enzyme responsible for the removal of O-GlcNAc modification, has been shown to reduce tau pathology in several transgenic models.

View Article and Find Full Text PDF

Background: Obesity and inflammation are highly integrated processes in the pathogenesis of insulin resistance, diabetes, dyslipidemia, and non-alcoholic fatty liver disease. Molecular mechanisms underlying inflammatory events during high fat diet-induced obesity are poorly defined in mouse models of obesity. This work investigated gene activation signals integral to the temporal development of obesity.

View Article and Find Full Text PDF

The kinetics of metabolic and inflammatory parameters associated with obesity were evaluated in a murine diet-induced obesity (DIO) model using a diet high in fat and cholesterol. Cellular infiltration and mediator production were assessed and shown to be therapeutically modulated by the PPARgamma agonist rosiglitazone. C57BL/6 mice were maintained on a 45% fat/ 0.

View Article and Find Full Text PDF

Aim: To investigate the effect of short-chain fatty acids (SCFAs) on production of prostaglandin E(2) (PGE(2)), cytokines and chemokines in human monocytes.

Methods: Human neutrophils and monocytes were isolated from human whole blood by using 1-Step Polymorph and RosetteSep Human Monocyte Enrichment Cocktail, respectively. Human GPR41 and GPR43 mRNA expression was examined by quantitative real-time polymerase chain reaction.

View Article and Find Full Text PDF

Purpose: Despite the acute onset, partial bladder outlet obstruction in the rabbit induces detrusor remodeling similar to that in men with benign prostatic hyperplasia in terms of its impact on structural and functional alterations in smooth muscle. We determined if partial bladder outlet obstruction induced remodeling alters the protein kinase C signaling pathway that leads to contraction.

Materials And Methods: Smooth muscle from control animals and those subjected to 2 weeks of partial bladder outlet obstruction were mounted for isometric force recording, measurement of myosin light chain phosphorylation and levels of adducin phosphorylation.

View Article and Find Full Text PDF

Partial bladder outlet obstruction (PBOO) alters the function of the whole bladder and produces specific alterations in the contractility of the bladder smooth muscle cell. The goal of this study was to test the hypothesis that PBOO affects smooth muscle contraction at the level of the receptor- and G protein-dependent increase in myofilament Ca2+ sensitivity. To address this question, we used alpha-toxin-permeabilized strips of bladder smooth muscle from control animals and animals subjected to 2 wk of PBOO.

View Article and Find Full Text PDF

Partial bladder outlet obstruction in the rabbit produces changes in bladder function similar to those seen clinically in patients with obstructive uropathies. Whole organ function is significantly altered, as are the smooth muscle cells inside the bladder wall. This study was designed to determine whether outlet obstruction alters smooth muscle function at the level of contractile filaments.

View Article and Find Full Text PDF

Bladder outlet obstruction secondary to benign prostate hyperplasia is associated with many cellular changes. This study was designed to determine whether these changes involve the contractile apparatus. Bladder smooth muscles from rabbits subjected to partial outlet obstruction for 2 wk were mounted for isometric force, isotonic shortening velocity, and myosin light chain (MLC) phosphorylation levels.

View Article and Find Full Text PDF