Publications by authors named "Michaela Skrabalova"

Lyme disease caused by spirochete Borrelia burgdorferi sensu lato, is a tick-born illness. If the infection is not eliminated by the host immune system and/or antibiotics, it may further disseminate and cause severe chronic complications. The immune response to Borrelia is mediated by phagocytic cells and by Borrelia-specific complement-activating antibodies associated with Th1 cell activation.

View Article and Find Full Text PDF

We designed and synthesised a series of new cationic lipids based on spermine linked to various hydrophobic anchors. These lipids could be potentially useful for the preparation of stable cationic liposomes intended for the construction of drug targeting systems applicable in the field of anticancer/antiviral therapy, vaccine carriers, and vectors for the gene therapy. Low in vitro toxicity was found for these compounds, especially for LD1, in several cell lines.

View Article and Find Full Text PDF

Hsp90-CA is present in cell wall of Candida pseudohyphae or hyphae-typical pathogenic morphotype for both systemic and mucosal Candida infections. Heat shock protein from Candida albicans (hsp90-CA) is an important target for protective antibodies during disseminated candidiasis of experimental mice and human. His-tagged protein rHsp90 was prepared and used as the antigen for preparation of experimental recombinant liposomal vaccine.

View Article and Find Full Text PDF

Liposomes represent a biocompatible platform for the construction of self-assembling proteoliposomes using nickel or zinc metallochelation. Potential applications of such structures consist in the development of new biocompatible vaccination nanoparticles and drug delivery nanoparticle systems. Here, we describe the design and construction of a flow-through ultrafiltration cell suitable for the preparation of monodisperse liposomes enabled for metallochelation and, hence, the formation of proteoliposomes.

View Article and Find Full Text PDF

Paclitaxel (PTX) is approved for the treatment of ovarian and breast cancer. The commercially available preparation of PTX, Cremophor EL(R) is associated with hypersensitivity reactions in spite of a suitable premedication. In general, the developed liposomal PTX formulations are troubled with low PTX encapsulation capacity (maximal content, 3 mol%) and accompanied by PTX crystallisation.

View Article and Find Full Text PDF