Publications by authors named "Michaela Segschneider"

Induced pluripotent stem cells (iPSCs) have enabled the generation of various difficult-to-access cell types such as human nociceptors. A key challenge associated with human iPSC-derived nociceptors (hiPSCdNs) is their prolonged functional maturation. While numerous studies have addressed the expression of classic neuronal markers and ion channels in hiPSCdNs, the temporal development of key signaling cascades regulating nociceptor activity has remained largely unexplored.

View Article and Find Full Text PDF

Combining multiple Parkinson's disease (PD) relevant cellular phenotypes might increase the accuracy of midbrain dopaminergic neuron (mDAN) in vitro models. We differentiated patient-derived induced pluripotent stem cells (iPSCs) with a LRRK2 G2019S mutation, isogenic control, and genetically unrelated iPSCs into mDANs. Using automated fluorescence microscopy in 384-well-plate format, we identified elevated levels of α-synuclein (αSyn) and serine 129 phosphorylation, reduced dendritic complexity, and mitochondrial dysfunction.

View Article and Find Full Text PDF

Understanding early nervous system stress response mechanisms is crucial for studying developmental neurotoxicity and devising neuroprotective treatments. We used hiPSC-derived long-term self-renewing neuroepithelial stem (lt-NES) cells differentiated for up to 12 weeks as an in vitro model of human neural development. Following a transcriptome analysis to identify pathway alterations, we induced acute oxidative stress (OS) using tert-butyl hydroperoxide (TBHP) and assessed cell viability at different stages of neural differentiation.

View Article and Find Full Text PDF

Epilepsy therapy is largely symptomatic and no effective therapy is available to prevent epileptogenesis. We therefore analysed the potential of stem cell-derived brain implants and of paracrine adenosine release to suppress the progressive development of seizures in the rat kindling-model. Embryonic stem (ES) cells, engineered to release the inhibitory neuromodulator adenosine by biallelic genetic disruption of the adenosine kinase gene (Adk-/-), and respective wild-type (wt) cells, were differentiated into neural precursor cells (NPs) and injected into the hippocampus of rats prior to kindling.

View Article and Find Full Text PDF

Pluripotency and the capability for unlimited self-renewal make human embryonic stem cells a promising tool for studying development and new cell replacement strategies. Here, we present a simple differentiation protocol, which permits the direct conversion of human embryonic stem cells into neurogenic precursors without formation of embryoid bodies or coculture with other cell types. In this protocol, human embryonic stem cells propagated as adherent cultures are induced to differentiate into the neural lineage in media containing fibroblast growth factor-2.

View Article and Find Full Text PDF