In this study, we investigated the properties of ascorbic acid (vitamin C), which is a naturally occurring water-soluble vitamin. Our goal is to evaluate its pro-oxidative and/or antioxidant capabilities. To do this, we initially used a confocal laser scanning microscope (CLSM) to visualize the differentiation pattern in U-937 cells under the treatment of variable concentrations of ascorbic acid.
View Article and Find Full Text PDFArch Biochem Biophys
February 2024
Human skin is exposed to various physical and chemical stress factors, which commonly cause the oxidation of lipids and proteins. In this study, azo initiator AAPH [2,2' -azobis(2-methylpropionamidine) dihydrochloride] was employed to initiate lipid peroxidation in porcine skin as an ex vivo model for human skin. We demonstrate that malondialdehyde (MDA), a secondary product of lipid peroxidation, is covalently bound to collagen in the dermis, forming MDA-collagen adducts.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
February 2024
Acetaldehyde can be found in human cells as a byproduct of various metabolic pathways, including oxidative processes such as lipid peroxidation. This secondary product of lipid peroxidation plays a role in various pathological processes, leading to various types of civilization diseases. In this study, the formation of free acetaldehyde induced by oxygen-centred radicals was studied in monocyte-like cell line U937.
View Article and Find Full Text PDFPlant Physiol Biochem
September 2023
Under environmental conditions, plants are exposed to various abiotic and biotic stress factors, which commonly cause the oxidation of lipids and proteins. Lipid peroxidation constantly produces malondialdehyde (MDA), a secondary product of lipid peroxidation, which is covalently bound to proteins forming MDA-protein adducts. The spatial distribution of MDA-protein adducts in Arabidopsis leaves shows that MDA-protein adducts are located in the chloroplasts, uniformly spread out over the thylakoid membrane.
View Article and Find Full Text PDFReactive oxygen species play a key role in cellular homeostasis and redox signaling at physiological levels, where excessive production affects the function and integrity of macromolecules, specifically proteins. Therefore, it is important to define radical-mediated proteotoxic stress in macrophages and identify target protein to prevent tissue dysfunction. A well employed, THP-1 cell line was utilized as in vitro model to study immune response and herein we employ immuno-spin trapping technique to investigate radical-mediated protein oxidation in macrophages.
View Article and Find Full Text PDFReactive oxygen species (ROS) represent a group of molecules with a signaling role that are involved in regulating human cell proliferation and differentiation. Increased ROS concentrations are often associated with the local nonspecific oxidation of biological macromolecules, especially proteins and lipids. Free radicals, in general, may randomly damage protein molecules through the formation of protein-centered radicals as intermediates that, in turn, decay into several end oxidation products.
View Article and Find Full Text PDFThe plant nucleus plays an irreplaceable role in cellular control and regulation by auxin (indole-3-acetic acid, IAA) mainly because canonical auxin signaling takes place here. Auxin can enter the nucleus from either the endoplasmic reticulum or cytosol. Therefore, new information about the auxin metabolome (auxinome) in the nucleus can illuminate our understanding of subcellular auxin homeostasis.
View Article and Find Full Text PDFFree radical-mediated activation of inflammatory macrophages remains ambiguous with its limitation to study within biological systems. U-937 and HL-60 cell lines serve as a well-defined model system known to differentiate into either macrophages or dendritic cells in response to various chemical stimuli linked with reactive oxygen species (ROS) production. Our present work utilizes phorbol 12-myristate-13-acetate (PMA) as a stimulant, and factors such as concentration and incubation time were considered to achieve optimized differentiation conditions.
View Article and Find Full Text PDFRegulation of protein function by reversible S-nitrosation, a post-translational modification based on the attachment of nitroso group to cysteine thiols, has emerged among key mechanisms of NO signalling in plant development and stress responses. S-nitrosoglutathione is regarded as the most abundant low-molecular-weight S-nitrosothiol in plants, where its intracellular concentrations are modulated by S-nitrosoglutathione reductase. We analysed modulations of S-nitrosothiols and protein S-nitrosation mediated by S-nitrosoglutathione reductase in cultivated Solanum lycopersicum (susceptible) and wild Solanum habrochaites (resistant genotype) up to 96 h post inoculation (hpi) by two hemibiotrophic oomycetes, Phytophthora infestans and Phytophthora parasitica.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2021
Photosystem II (PSII) is an intrinsic membrane protein complex that functions as a light-driven water:plastoquinone oxidoreductase in oxygenic photosynthesis. Electron transport in PSII is associated with formation of reactive oxygen species (ROS) responsible for oxidative modifications of PSII proteins. In this study, oxidative modifications of the D1 and D2 proteins by the superoxide anion (O) and the hydroxyl (HO) radicals were studied in WT and a tocopherol cyclase () mutant, which is deficient in the lipid-soluble antioxidant α-tocopherol.
View Article and Find Full Text PDFThe U937 cell culture is a pro-monocytic, human histiocytic lymphoma cell line. These monocytes can differentiate into either macrophages or dendritic cells (antigen-presenting cells) depending on the initiators. The U937 cells activated in the presence of phorbol 12-myristate 13-acetate (PMA) change their morphology into macrophage-like cells creating pseudopodia and adhering generously.
View Article and Find Full Text PDFLeaf senescence, accompanied by chlorophyll breakdown, chloroplast degradation and inhibition of photosynthesis, can be suppressed by an exogenous application of cytokinins. Two aromatic cytokinin arabinosides (6-benzylamino-9-β-d-arabinofuranosylpurines; BAPAs), 3-hydroxy- (3OHBAPA) and 3-methoxy- (3MeOBAPA) derivatives, have recently been found to possess high anti-senescence activity. Interestingly, their effect on the maintenance of chlorophyll content and maximal quantum yield of photosystem II (PSII) in detached dark-adapted leaves differed quantitatively in wheat ( L.
View Article and Find Full Text PDFFree Radic Biol Med
November 2020
Tocochromanols (tocopherols, tocotrienols and plastochromanol-8), isoprenoid quinone (plastoquinone-9 and plastoquinol-9) and carotenoids (carotenes and xanthophylls), are lipid-soluble antioxidants in the chloroplasts, which play an important defensive role against photooxidative stress in plants. In this study, the interplay between the antioxidant activities of those compounds in excess light stress was analyzed in wild-type (WT) Arabidopsis thaliana and in a tocopherol cyclase mutant (vte1), a homogentisate phytyl transferase mutant (vte2) and a tocopherol cyclase overexpressor (VTE1oex). The results reveal a strategy of cooperation and replacement between α-tocopherol, plastochromanol-8, plastoquinone-9/plastoquinol-9 and zeaxanthin.
View Article and Find Full Text PDFNitric oxide plays an important role in the pathogenesis of Pseudoidium neolycopersici, the causative agent of tomato powdery mildew. S-nitrosoglutathione reductase, the key enzyme of S-nitrosothiol homeostasis, was investigated during plant development and following infection in three genotypes of Solanum spp. differing in their resistance to P.
View Article and Find Full Text PDFMechanical injury or wounding in plants can be attributed to abiotic or/and biotic causes. Subsequent defense responses are either local, i.e.
View Article and Find Full Text PDFOxidative modification of proteins in photosystem II (PSII) exposed to high light has been studied for a few decades, but the characterization of protein radicals formed by protein oxidation is largely unknown. Protein oxidation is induced by the direct reaction of proteins with reactive oxygen species known to form highly reactive protein radicals comprising carbon-centered (alkyl) and oxygen-centered (peroxyl and alkoxyl) radicals. In this study, protein radicals were monitored in Arabidopsis exposed to high light by immuno-spin trapping technique based on the detection of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) nitrone adducts using the anti-DMPO antibody.
View Article and Find Full Text PDFDuring interphase, the chromosomes of eukaryotes decondense and they occupy distinct regions of the nucleus, called chromosome domains or chromosome territories (CTs). In plants, the Rabl's configuration, with telomeres at one pole of nucleus and centromeres at the other, appears to be common, at least in plants with large genomes. It is unclear whether individual chromosomes of plants adopt defined, genetically determined addresses within the nucleus, as is the case in mammals.
View Article and Find Full Text PDFAlien introgressions introduce beneficial alleles into existing crops and hence, are widely used in plant breeding. Generally, introgressed alien chromosomes show reduced meiotic pairing relative to the host genome, and may be eliminated over generations. Reduced pairing appears to result from a failure of some telomeres of alien chromosomes to incorporate into the leptotene bouquet at the onset of meiosis, thereby preventing chiasmate pairing.
View Article and Find Full Text PDFThis article contains data related to the research article entitled, "Organic radical imaging in plants: Focus on protein radicals" (Kumar et al., 2018). The data presented herein focus on reactive oxygen species (ROS) and organic radical formed within photosynthetic tissues of during high light stress and includes (1) Confocal laser scanning microscopic images using 3'-p-(hydroxyphenyl) fluorescein (HPF) as specific probe for the detection of hydroxyl radical (HO); (2) Confocal laser scanning microscopic images using Singlet Oxygen Sensor Green (SOSG) as a specific probe for the detection of singlet oxygen (O) and; (3) Electron paramagnetic resonance (EPR) spectroscopy using spin traps for the detection of organic radical.
View Article and Find Full Text PDFBiomolecule (lipid and protein) oxidation products formed in plant cells exposed to photooxidative stress play a crucial role in the retrograde signaling and oxidative damage. The oxidation of biomolecules initiated by reactive oxygen species is associated with formation of organic (alkyl, peroxyl and alkoxyl) radicals. Currently, there is no selective and sensitive technique available for the detection of organic radicals in plant cells.
View Article and Find Full Text PDFFormation of singlet oxygen (O) was reported to accompany light stress in plants, contributing to cell signaling or oxidative damage. So far, Singlet Oxygen Sensor Green (SOSG) has been the only commercialized fluorescent probe for O imaging though it suffers from several limitations (unequal penetration and photosensitization) that need to be carefully considered to avoid misinterpretation of the analysed data. Herein, we present results of a comprehensive study focused on the appropriateness of SOSG for O imaging in three model photosynthetic organisms, unicellular cyanobacteria Synechocystis sp.
View Article and Find Full Text PDFThe plant hormone auxin is a key player in the regulation of plant growth and development. Despite numerous studies devoted to understanding its role in a wide spectrum of physiological processes, full appreciation of its function is linked to a comprehensive determination of its spatio-temporal distribution, which plays a crucial role in its mode of action. Conjugation of fluorescent tracers to plant hormones enables sensitive and specific visualization of their subcellular and tissue-specific localization and transport in planta, which represents a powerful tool for plant physiology.
View Article and Find Full Text PDFPrenylquinols (tocochromanols and plastoquinols) serve as efficient physical and chemical quenchers of singlet oxygen ( O ) formed during high light stress in higher plants. Although quenching of O by prenylquinols has been previously studied, direct evidence for chemical quenching of O by plastoquinols and their oxidation products is limited in vivo. In the present study, the role of plastoquinol-9 (PQH -9) in chemical quenching of O was studied in Arabidopsis thaliana lines overexpressing the SOLANESYL DIPHOSPHATE SYNTHASE 1 gene (SPS1oex) involved in PQH -9 and plastochromanol-8 biosynthesis.
View Article and Find Full Text PDFResistant Lactuca spp. genotypes can efficiently modulate levels of S-nitrosothiols as reactive nitrogen species derived from nitric oxide in their defence mechanism against invading biotrophic pathogens including lettuce downy mildew. S-Nitrosylation belongs to principal signalling pathways of nitric oxide in plant development and stress responses.
View Article and Find Full Text PDFDevelopmental transitions and stress reactions in both eukaryotes and prokaryotes are tightly linked with fast and localized modifications in concentrations of reactive oxygen and nitrogen species (ROS and RNS). Fluorescent microscopic analyses are widely applied to detect localized production of ROS and RNS . In this mini-review we discuss the biological characteristics of studied material (cell wall, extracellular matrix, and tissue complexity) and its handling (concentration of probes, effect of pressure, and higher temperature) which influence results of histochemical staining with "classical" fluorochromes.
View Article and Find Full Text PDF