Publications by authors named "Michaela Rothova"

Cell proliferation is fundamental for almost all stages of development and differentiation that require an increase in cell number. Although cell cycle phase has been associated with differentiation, the actual process of proliferation has not been considered as having a specific role. Here we exploit human embryonic stem cell-derived endodermal progenitors that we find are an in vitro model for the ventral foregut.

View Article and Find Full Text PDF

Development of multicellular organisms is orchestrated by persistent cell-cell communication between neighboring partners. Direct interaction between different cell types can induce molecular signals that dictate lineage specification and cell fate decisions. Current single-cell RNA-seq technology cannot adequately analyze cell-cell contact-dependent gene expression, mainly due to the loss of spatial information.

View Article and Find Full Text PDF

High-resolution maps of embryonic development suggest that acquisition of cell identity is not limited to canonical germ layers but proceeds via alternative routes. Despite evidence that visceral organs are formed via embryonic and extra-embryonic trajectories, the production of organ-specific cell types in vitro focuses on the embryonic one. Here we resolve these differentiation routes using massively parallel single-cell RNA sequencing to generate datasets from FOXA2 reporter mouse embryos and embryonic stem cell differentiation towards endoderm.

View Article and Find Full Text PDF

Anterior definitive endoderm (ADE), the ventral foregut precursor, is both an important embryonic signaling center and a unique multipotent precursor of liver, pancreas, and other organs. Here, a method is described for the differentiation of mouse embryonic stem cells (mESCs) to definitive endoderm with pronounced anterior character. ADE-containing cultures can be produced in vitro by suspension (embryoid body) culture or in a serum-free adherent monolayer culture.

View Article and Find Full Text PDF

During embryonic development signalling pathways act repeatedly in different contexts to pattern the emerging germ layers. Understanding how these different responses are regulated is a central question for developmental biology. In this study, we used mouse embryonic stem cell (mESC) differentiation to uncover a new mechanism for PI3K signalling that is required for endoderm specification.

View Article and Find Full Text PDF

Background: The pituitary gland is formed by the juxtaposition of two tissues: neuroectoderm arising from the basal diencephalon, and oral epithelium, which invaginates towards the central nervous system from the roof of the mouth. The oral invagination that reaches the brain from the mouth is referred to as Rathke's pouch, with the tip forming the adenohypophysis and the stalk disappearing after the earliest stages of development. In tetrapods, formation of the cranial base establishes a definitive barrier between the pituitary and oral cavity; however, numerous extinct and extant vertebrate species retain an open buccohypophyseal canal in adulthood, a vestige of the stalk of Rathke's pouch.

View Article and Find Full Text PDF

Background: The contribution of the endoderm to the oral tissues of the head has been debated for many years. With the arrival of Cre/LoxP technology endoderm progenitor cells can now be genetically labeled and tissues derived from the endoderm traced. Using Sox17-2A-iCre/Rosa26 reporter mice we have followed the fate of the endoderm in the teeth, glands, and taste papillae of the oral cavity.

View Article and Find Full Text PDF

At the bud stage of tooth development the neural crest derived mesenchyme condenses around the dental epithelium. As the tooth germ develops and proceeds to the cap stage, the epithelial cervical loops grow and appear to wrap around the condensed mesenchyme, enclosing the cells of the forming dental papilla. We have fate mapped the dental mesenchyme, using in vitro tissue culture combined with vital cell labelling and tissue grafting, and show that the dental mesenchyme is a much more dynamic population then previously suggested.

View Article and Find Full Text PDF

Teeth develop from epithelium and neural crest-derived mesenchyme via a series of reciprocal epithelial-mesenchymal interactions. The majority of the dental papilla of the tooth has been demonstrated to be of neural crest origin. However, non-neural crest cells have also been observed in this region from the bud stage of tooth development onwards.

View Article and Find Full Text PDF

It is known from paleontology studies that two premolars have been lost during mouse evolution. During mouse mandible development, two bud-like structures transiently form that may represent rudimentary precursors of the lost premolars. However, the interpretation of these structures and their significance for mouse molar development are highly controversial because of a lack of molecular data.

View Article and Find Full Text PDF

An understanding of the factors that promote or inhibit tooth development is essential for designing biological tooth replacements. The embryonic mouse dentition provides an ideal system for studying such factors because it consists of two types of tooth primordia. One type of primordium will go on to form a functional tooth, whereas the other initiates development but arrests at or before the bud stage.

View Article and Find Full Text PDF

Background: The development of the secondary palate has been a main topic in craniofacial research, as its failure results in cleft palate, one of the most common birth defects in human. Nevertheless, palatal rugae (or rugae palatinae), which are transversal ridges developing on the secondary palate, received little attention. However, rugae could be useful as landmarks to monitor anterior/posterior (A/P) palatal growth, and they provide a simple model of mesenchymal-epithelial structures arranged in a serial pattern.

View Article and Find Full Text PDF