Publications by authors named "Michaela Mausz"

Our comprehension of membrane function has predominantly advanced through research on glycerophospholipids, also known as phosphoglycerides, which are glycerol phosphate-based lipids found across all three domains of life. However, in bacteria, a perplexing group of lipids distinct from glycerol phosphate-based ones also exists. These are amino acid-containing lipids that form an amide bond between an amino acid and a fatty acid.

View Article and Find Full Text PDF

Dimethylsulfoniopropionate (DMSP) is a ubiquitous organosulfur compound in marine environments with important functions in both microorganisms and global biogeochemical carbon and sulfur cycling. The SAR11 clade and marine Roseobacter group (MRG) represent two major groups of heterotrophic bacteria in Earth's surface oceans, which can accumulate DMSP to high millimolar intracellular concentrations. However, few studies have investigated how SAR11 and MRG bacteria import DMSP.

View Article and Find Full Text PDF

Lipids play a crucial role in maintaining cell integrity and homeostasis with the surrounding environment. Cosmopolitan marine roseobacter clade (MRC) and SAR11 clade bacteria are unique in that, in addition to glycerophospholipids, they also produce an array of amino acid-containing lipids that are conjugated with beta-hydroxy fatty acids through an amide bond. Two of these aminolipids, the ornithine aminolipid (OL) and the glutamine aminolipid (QL), are synthesized using the O-acetyltransferase OlsA.

View Article and Find Full Text PDF

Eukaryotes may experience oxygen deprivation under both physiological and pathological conditions. Because oxygen shortage leads to a reduction in cellular energy production, all eukaryotes studied so far conserve energy by suppressing their metabolism. However, the molecular physiology of animals that naturally and repeatedly experience anoxia is underexplored.

View Article and Find Full Text PDF

Methane is a potent greenhouse gas in the atmosphere, and its concentration has continued to increase in recent decades. Aerobic methanotrophs, bacteria that use methane as the sole carbon source, are an important biological sink for methane, and they are widely distributed in the natural environment. However, relatively little is known on how methanotroph activity is regulated by nutrients, particularly phosphorus (P).

View Article and Find Full Text PDF

Chemosynthetic symbioses occur worldwide in marine habitats, but comprehensive physiological studies of chemoautotrophic bacteria thriving on animals are scarce. Stilbonematinae are coated by thiotrophic . As these nematodes migrate through the redox zone, their ectosymbionts experience varying oxygen concentrations.

View Article and Find Full Text PDF

Marine roseobacter group bacteria are numerically abundant and ecologically important players in ocean ecosystems. These bacteria are capable of modifying their membrane lipid composition in response to environmental change. Remarkably, a variety of lipids are produced in these bacteria, including phosphorus-containing glycerophospholipids and several amino acid-containing aminolipids such as ornithine lipids and glutamine lipids.

View Article and Find Full Text PDF

Ocean acidification (OA), a consequence of anthropogenic carbon dioxide (CO ) emissions, strongly impacts marine ecosystems. OA also influences iron (Fe) solubility, affecting biogeochemical and ecological processes. We investigated the interactive effects of CO and Fe availability on the metabolome response of a natural phytoplankton community.

View Article and Find Full Text PDF

Background: Coastal environments are dynamic and rapidly changing. Living organisms in coastal environments are known to synthesise large quantities of organic osmolytes, which they use to cope with osmotic stresses. The organic osmolyte glycine betaine (GBT) is ubiquitously found in marine biota from prokaryotic Bacteria and Archaea to coastal plants, marine protozoa, and mammals.

View Article and Find Full Text PDF

Methylated amines (MAs) are ubiquitous in marine ecosystems, found from surface seawaters to sediment pore waters. These volatile ammonium analogs play important roles in biogeochemical cycles of carbon and nitrogen in the marine water column. They also contribute to the release of climate-active gases, being precursors of the potent greenhouse gas methane through methanogenesis in coastal sediments.

View Article and Find Full Text PDF

Trimethylamine (TMA) is common in marine environments. Although the presence of this compound in the oceans has been known for a long time, unlike the mammalian gastrointestinal tract, where TMA metabolism by microorganisms has been studied intensely, many questions remain unanswered about the microbial metabolism of marine TMA. This minireview summarizes what is currently known about the sources and fate of TMA in marine environments and the different pathways and enzymes involved in TMA metabolism in marine bacteria.

View Article and Find Full Text PDF

Marine microorganisms employ multiple strategies to cope with transient and persistent nutrient limitation, one of which, for alleviating phosphorus (P) stress, is to substitute membrane glycerophospholipids with non-P containing surrogate lipids. Such a membrane lipid remodelling strategy enables the most abundant marine phytoplankton and heterotrophic bacteria to adapt successfully to nutrient scarcity in marine surface waters. An important group of non-P lipids, the aminolipids which lack a diacylglycerol backbone, are poorly studied in marine microbes.

View Article and Find Full Text PDF

Methylated amines (MAs) are ubiquitous in the marine environment and their subsequent flux into the atmosphere can result in the formation of aerosols and ultimately cloud condensation nuclei. Therefore, these compounds have a potentially important role in climate regulation. Using Ruegeria pomeroyi as a model, we identified the genes encoding dimethylamine (DMA) monooxygenase (dmmABC) and demonstrate that this enzyme degrades DMA to monomethylamine (MMA).

View Article and Find Full Text PDF

In phytoplankton a high species diversity of microalgae co-exists at a given time. But diversity is not only reflected by the species composition. Within these species different life phases as well as different metabolic states can cause additional diversity.

View Article and Find Full Text PDF

Marine viruses are major ecological and evolutionary drivers of microbial food webs regulating the fate of carbon in the ocean. We combined transcriptomic and metabolomic analyses to explore the cellular pathways mediating the interaction between the bloom-forming coccolithophore Emiliania huxleyi and its specific coccolithoviruses (E. huxleyi virus [EhV]).

View Article and Find Full Text PDF

Several marine and freshwater diatoms produce polyunsaturated aldehydes (PUA) in wound-activated processes. These metabolites are also released by intact diatom cells during algal blooms. Due to their activity in laboratory experiments, PUA are considered as potential mediators of diatom-bacteria interactions.

View Article and Find Full Text PDF