The most common surgical procedure to manage the malunion of the bones is corrective osteotomy. The current gold standard for securing the bone segments after osteotomy is the use of titanium plates and allografts which have disadvantages such as possible allergic reaction, additional operations such as extraction of the graft from other sites and removal operation. The utilization of resorbable materials presents an opportunity to mitigate these drawbacks but has not yet been thoroughly researched in the literature.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
December 2024
Purpose: The use of computer-assisted virtual surgical planning (VSP) for craniosynostosis surgery is gaining increasing implementation in the clinics. However, accurately transferring the preoperative planning data to the operating room remains challenging. We introduced and investigated a fully digital workflow to perform fronto-orbital advancement (FOA) surgery using 3D-printed patient-specific implants (PSIs) and cold-ablation robot-guided laser osteotomy.
View Article and Find Full Text PDFObjective: To report a digital workflow for use and long-term outcome of cranioplasty with a 3D-printed patient-specific Polyetheretherketone (PEEK) implant in a 12-y-old German Shepherd dog after surgical removal of an extensive occipital bone multilobular osteochondrosarcoma (MLO).
Study Design: Retrospective case report.
Animal: A 12-year-old neutered female German Shepherd dog was presented with facial deformity, blindness, tetraparesis, and ataxia.
: With the rapid advancement in surgical technologies, new workflows for mandibular reconstruction are constantly being evaluated. Cutting guides are extensively employed for defining osteotomy planes but are prone to errors during fabrication and positioning. A virtually defined osteotomy plane and drilling holes in robotic surgery minimize potential sources of error and yield highly accurate outcomes.
View Article and Find Full Text PDFBackground: Bioresorbable patient-specific additive-manufactured bone grafts, meshes, and plates are emerging as a promising alternative that can overcome the challenges associated with conventional off-the-shelf implants. The fabrication of patient-specific implants (PSIs) directly at the point-of-care (POC), such as hospitals, clinics, and surgical centers, allows for more flexible, faster, and more efficient processes, reducing the need for outsourcing to external manufacturers. We want to emphasize the potential advantages of producing bioresorbable polymer implants for cranio-maxillofacial surgery at the POC by highlighting its surgical applications, benefits, and limitations.
View Article and Find Full Text PDFOnly a few mandibular bone finite element (FE) models have been validated in literature, making it difficult to assess the credibility of the models. In a comparative study between FE models and biomechanical experiments using a synthetic polyamide 12 (PA12) mandible model, we investigate how material properties and boundary conditions affect the FE model's accuracy using the design of experiments approach. Multiple FE parameters, such as contact definitions and the materials' elastic and plastic deformation characteristics, were systematically analyzed for an intact mandibular model and transferred to the fracture fixation model.
View Article and Find Full Text PDFCranioplasty with freehand-molded polymethylmethacrylate implants is based on decades of experience and is still frequently used in clinical practice. However, data confirming the fracture toughness and standard biomechanical tests are rare. This study aimed to determine the amount of force that could be applied to virtually planned, template-molded, patient-specific implants (n = 10) with an implant thickness of 3 mm, used in the treatment of a temporoparietal skull defect (91.
View Article and Find Full Text PDFThe most common three-dimensional (3D) printing method is material extrusion, where a pre-made filament is deposited layer-by-layer. In recent years, low-cost polycaprolactone (PCL) material has increasingly been used in 3D printing, exhibiting a sufficiently high quality for consideration in cranio-maxillofacial reconstructions. To increase osteoconductivity, prefabricated filaments for bone repair based on PCL can be supplemented with hydroxyapatite (HA).
View Article and Find Full Text PDFPure orbital blowout fractures occur within the confines of the internal orbital wall. Restoration of orbital form and volume is paramount to prevent functional and esthetic impairment. The anatomical peculiarity of the orbit has encouraged surgeons to develop implants with customized features to restore its architecture.
View Article and Find Full Text PDFTo investigate the potential of optical coherence tomography (OCT) to distinguish between normal and pathologic thyroid tissue, 3D OCT images were acquired on thyroid samples from adult subjects (n=22) diagnosed with a variety of pathologies. The follicular structure was analyzed in terms of count, size, density and sphericity. Results showed that OCT images highly agreed with the corresponding histopatology and the calculated parameters were representative of the follicular structure variation.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
During stereotactic brain tumor biopsies, the detection of protoporphyrin IX (PpIX) fluorescence and microvascular perfusion using laser Doppler flowmetry (LDF) with a handheld fiber optic probe allows the identification of tumor tissue while decreasing the risk of intracranial hemorrhage. Neurosurgeons performing this procedure usually view the measurement values on a screen. When their visual focus is directed at the surgical site, they require an assistant to verbally relay the values.
View Article and Find Full Text PDF