Background: Coexistent CKD and cardiovascular diseases are highly prevalent in Western populations and account for substantial mortality. We recently found that apolipoprotein C-3 (ApoC3), a major constituent of triglyceride-rich lipoproteins, induces sterile systemic inflammation by activating the NOD-like receptor protein-3 (NLRP3) inflammasome in human monocytes via an alternative pathway.
Methods: To identify posttranslational modifications of ApoC3 in patients with CKD, we used mass spectrometry to analyze ApoC3 from such patients and from healthy individuals.
Purpose: Biopsies are a diagnostic tool for the diagnosis of histopathological, molecular biological, proteomic, and imaging data, to narrow down disease patterns or identify diseases. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) provides an emerging state-of-the-art technique for molecular imaging of biological tissue. The aim of this study is the registration of MALDI MSI data sets and data acquired from different histological stainings to create a 3D model of biopsies and whole organs.
View Article and Find Full Text PDFMatrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MALDI MSI) has become a powerful tool with a high potential relevance for the analysis of biomolecules in tissue samples in the context of diseases like cancer and cardiovascular or cardiorenal diseases. In recent years, significant progress has been made in the technology of MALDI MSI. However, a more systematic optimization of sample preparation would likely achieve an increase in the molecular information derived from MALDI MSI.
View Article and Find Full Text PDF