The current move towards digital pathology enables pathologists to use artificial intelligence (AI)-based computer programmes for the advanced analysis of whole slide images. However, currently, the best-performing AI algorithms for image analysis are deemed black boxes since it remains - even to their developers - often unclear why the algorithm delivered a particular result. Especially in medicine, a better understanding of algorithmic decisions is essential to avoid mistakes and adverse effects on patients.
View Article and Find Full Text PDFYearb Med Inform
August 2022
Background: Artificial Intelligence (AI) is becoming more and more important especially in datacentric fields, such as biomedical research and biobanking. However, AI does not only offer advantages and promising benefits, but brings about also ethical risks and perils. In recent years, there has been growing interest in AI ethics, as reflected by a huge number of (scientific) literature dealing with the topic of AI ethics.
View Article and Find Full Text PDFArtificial intelligence (AI) solutions that automatically extract information from digital histology images have shown great promise for improving pathological diagnosis. Prior to routine use, it is important to evaluate their predictive performance and obtain regulatory approval. This assessment requires appropriate test datasets.
View Article and Find Full Text PDFThe process of finding a diagnosis in the medical domain relies on implicit knowledge and the experience of a human expert. In this article, we report on the observation of human decision making, shown by the example of pathology. By tracking the diagnostic steps, individual building blocks are identified, which not only contribute to a diagnostic finding, but can also be used in the future to train and develop artificial intelligence (AI) algorithms.
View Article and Find Full Text PDF