Publications by authors named "Michaela Endres"

Background: Tissue defects in the annulus fibrosus (AF) due to intervertebral disc (IVD) degeneration or after nucleodiscectomy have little self-healing capacity. To prevent progressive degeneration of the IVD, the AF must be repaired. Biological closure has not yet been achieved and is a challenge for the research community.

View Article and Find Full Text PDF

Stereolithographic bioprinting holds great promise in the quest for creating artificial, biomimetic cartilage-like tissue. To introduce a more biomimetic approach, we examined blending and stratifying methacrylated hyaluronic acid (HAMA) and methacrylated gelatin (GelMA) bioinks to mimic the zonal structure of articular cartilage. Bioinks were suspended with porcine chondrocytes before being printed in a digital light processing approach.

View Article and Find Full Text PDF

Intervertebral disc (IVD) herniation and degeneration is a major source of back pain. In order to regenerate a herniated and degenerated disc, closure of the anulus fibrosus (AF) is of crucial importance. For molecular characterization of AF, genome-wide Affymetrix HG-U133plus2.

View Article and Find Full Text PDF

Since loss of meniscus is correlated with an increasing risk for osteoarthritis, meniscal scaffolds are proposed as new strategies. Development of a suitable scaffold has to take into account differing meniscus thickness, exposure to compressive and tensile forces combined with high porosity and biocompatibility of the material. After physical testing of three flat scaffolds composed of different modified polyglycolic acid (PGA) fibers, a three-dimensional meniscus-shaped PGA-hyaluronan implant was generated.

View Article and Find Full Text PDF

To create artificial cartilage in vitro, mimicking the function of native extracellular matrix (ECM) and morphological cartilage-like shape is essential. The interplay of cell patterning and matrix concentration has high impact on the phenotype and viability of the printed cells. To advance the capabilities of cartilage bioprinting, we investigated different ECMs to create an in vitro chondrocyte niche.

View Article and Find Full Text PDF

Plasma fibronectin (pFN) plays a crucial role in wound healing by binding to integrins and inducing cell migration. It is known to induce the migration and proliferation of mesenchymal progenitor cells in vitro, which play a key role during microfracture in cartilage repair. Endogenous chondrocytes from the native cartilage of the defect rim might aid in cartilage repair.

View Article and Find Full Text PDF

Intervertebral disc degeneration is a major source of back pain. For intervertebral disc regeneration after herniation a fast closure of anulus fibrosus (AF) defects is crucial. Here, the use of the C-C motif chemokine ligand 25 (CCL)25 in comparison to differentiation factors such as transforming growth factor (TGF)β3, bone morphogenetic protein (BMP)2, BMP7, BMP12, and BMP14 (all in concentrations of 10, 50 and 100 ng/mL) was tested in an in vitro micro mass pellet model with isolated and cultivated human AF-cells ( = 3) to induce and enhance AF-matrix formation.

View Article and Find Full Text PDF

For regenerative therapies in the orthopedic field, one prerequisite for therapeutic success in the treatment of cartilage defects is the potential of body's own cells to migrate, proliferate and differentiate into functional cells. While this has been demonstrated for mesenchymal stem and progenitor cells (MPC) from healthy tissue sources, the potential of cells from degenerative conditions is unclear. In this study the regenerative potential of MPC derived from subchondral cancellous bone with diagnosed osteoarthritis is evaluated .

View Article and Find Full Text PDF

Objective: The objective was to evaluate the proliferating, migratory and extracellular matrix (ECM) forming potential of annulus fibrosus cells derived from early (edAFC) or advanced (adAFC) degenerative tissue and their usability as a possible cell source for regenerative approaches for AF closure.

Design: EdAFC ( = 5 Pfirrman score of 2-3) and adAFC (n = 5 Pfirrman score of 4-5) were isolated from tissue of patients undergoing spine stabilizing surgery. Cell migration on stimulation with human serum (HS), platelet-rich plasma (PRP), and transforming growth factor β-3 (TGFB3) was assessed by migration assay and proliferation was assessed on stimulation with HS.

View Article and Find Full Text PDF

Purpose: The purpose of this in vitro study was to evaluate the migratory, proliferating, and extracellular matrix (ECM) forming effect of human serum (HS) and platelet-rich plasma (PRP) on meniscus cells derived from human knees with early or advanced degenerative changes.

Materials And Methods: Medial menisci from knees with early degenerative changes (n = 5; mean Kellgren score of 1) undergoing arthroscopic meniscal surgery and advanced degenerative changes (n = 5; mean Kellgren score of 4) undergoing total knee replacement were collected. Cell migration and proliferation upon stimulation with HS and PRP were assessed by migration and proliferation assays.

View Article and Find Full Text PDF

Purpose: To evaluate the effect of 10% human serum (HS), 5% platelet-rich plasma (PRP), and 5% autologous conditioned plasma (ACP) on migration, proliferation, and extracellular matrix (ECM) synthesis of human meniscus cells.

Methods: Cell migration and proliferation on stimulation with HS, PRP, and ACP were assessed by chemotaxis assays and measurement of genomic DNA content. Meniscus cells were cultivated in pellets stimulated with 10% HS, 5% PRP, or 5% ACP.

View Article and Find Full Text PDF

Purpose: To evaluate the chondrogenic potential of platelet concentrates on human subchondral mesenchymal progenitor cells (MPCs) as assessed by histomorphometric analysis of proteoglycans and type II collagen. Furthermore, the migratory and proliferative effect of platelet concentrates were assessed.

Methods: Platelet-rich plasma (PRP) was prepared using preparation kits (Autologous Conditioned Plasma [ACP] Kit [Arthrex, Naples, FL]; Regen ACR-C Kit [Regen Lab, Le Mont-Sur-Lausanne, Switzerland]; and Dr.

View Article and Find Full Text PDF

Aims: To evaluate the impact of human plasma-derived fibronectin (FN) on human subchondral mesenchymal progenitor cells regarding cell migration, proliferation, and chondrogenic differentiation.

Materials & Methods: Human subchondral mesenchymal progenitor cells were analyzed for their migration capacity upon treatment with human plasma-derived FN. Proliferation activity was evaluated by DNA content.

View Article and Find Full Text PDF

In cartilage regeneration, bio-activated implants are used in stem and progenitor cell-based microfracture cartilage repair procedures. Our aim was to analyze the chondrogenic potential of freeze-dried resorbable polymer-based polyglycolic acid (PGA) scaffolds bio-activated with transforming growth factor-β3 (TGFB3) on human subchondral mesenchymal progenitor cells known from microfracture. Progenitor cells derived from femur heads were cultured in the presence of freeze-dried TGFB3 in high-density pellet culture and in freeze-dried TGFB3-PGA scaffolds for chondrogenic differentiation.

View Article and Find Full Text PDF

Background: Three-dimensional (3D) culture in porous biomaterials as well as stimulation with growth factors are known to be supportive for intervertebral disc cell differentiation and tissue formation. Unless sophisticated releasing systems are used, however, effective concentrations of growth factors are maintained only for a very limited amount of time in in vivo applications. Therefore, we investigated, if an initial boost with transforming growth factor-beta 1 (TGF-beta 1) is capable to induce a lasting effect of superior cartilaginous differentiation in slightly and severely degenerated human annulus fibrosus (AF) cells.

View Article and Find Full Text PDF

In vitro tissue models are useful tools for the development of novel therapy strategies in cartilage repair and care. The limited availability of human primary tissue and high costs of animal models hamper preclinical tests of innovative substances and techniques. In this study we tested the potential of porcine chondrocyte micromass cultures to mimic human articular cartilage and essential aspects of osteoarthritis (OA) in vitro.

View Article and Find Full Text PDF

Cartilage repair approaches may be improved by addition of human platelet-rich plasma (PRP) that increases chondrogenic differentiation of mesenchymal stem and progenitor cells. The aim of our study was to evaluate the effect of human PRP on the differentiation of multipotent human subchondral progenitor cells in resorbable polyglycolic acid-hyaluronan (PGA-HA) scaffolds. PGA-HA scaffolds were loaded with subchondral progenitor cells and stimulated with transforming growth factor-beta3 (TGFB3) or 5% PRP, whereas nonstimulated cultures served as controls.

View Article and Find Full Text PDF

Introduction: The use of platelet-rich plasma (PRP) in regenerative approaches in cartilage repair is becoming more common. Information about PRP composition and its content of putative bioactive chondrogenic growth factors (GF) that may support cartilage regeneration is scarce.

Methods: GF composition of a pool of 6 PRP preparations was determined using Protein Antibody Membrane Arrays covering 507 GF, signaling molecules, and receptors.

View Article and Find Full Text PDF

The small size and heterogeneity of the pores in bacterial nanocellulose (BNC) hydrogels limit the ingrowth of cells and their use as tissue-engineered implant materials. The use of placeholders during BNC biosynthesis or post-processing steps such as (touch-free) laser perforation can overcome this limitation. Since three-dimensionally arranged channels may be required for homogeneous and functional seeding, three-dimensional (3-D) laser perforation of never-dried BNC hydrogels was performed.

View Article and Find Full Text PDF

Introduction: Current therapies for articular cartilage defects fail to achieve qualitatively sufficient tissue regeneration, possibly because of a mismatch between the speed of cartilage rebuilding and the resorption of degradable implant polymers. The present study focused on the self-healing capacity of resident cartilage cells in conjunction with cell-free and biocompatible (but non-resorbable) bacterial nanocellulose (BNC). This was tested in a novel in vitro bovine cartilage punch model.

View Article and Find Full Text PDF

In cartilage repair, scaffold-assisted one-step approaches are used to improve the microfracture (Mfx) technique. Since the number of progenitors in Mfx is low and may further decrease with age, aim of our study was to analyze the chondrogenic potential of freeze-dried polyglycolic acid-hyaluronan (PGA-HA) implants preloaded with mesenchymal stem cells (MSCs) in vitro and in a rabbit articular cartilage defect model. Human bone marrow-derived MSC from iliac crest were cultured in freeze-dried PGA-HA implants for chondrogenic differentiation.

View Article and Find Full Text PDF

Human serum has the potential for mesenchymal progenitor cell recruitment in repair of articular cartilage lesions. It is unclear which factor(s) in serum mediate this migratory effect. Our goal was to identify cell recruiting factors in human serum fractions obtained by ion exchange chromatography.

View Article and Find Full Text PDF

Background: Scaffold-assisted autologous chondrocyte implantation is an effective clinical procedure for cartilage repair. From the regulatory point of view, the ovine model is one of the suggested large animal models for pre-clinical studies. The aim of our study was to evaluate the in vitro re-differentiation capacity of expanded ovine chondrocytes in biomechanically characterized polyglycolic acid (PGA)/fibrin biomaterials for scaffold-assisted cartilage repair.

View Article and Find Full Text PDF

Closure and biological repair of anulus fibrosus (AF) defects in intervertebral disc diseases is a therapeutic challenge. The aim of our study was to evaluate the anabolic properties of bioactive factors on cartilaginous matrix formation by AF cells. Human AF cells were harvested from degenerated lumbar AF tissue and expanded in monolayer culture.

View Article and Find Full Text PDF

Degeneration of intervertebral discs (IVDs) occurs frequently and is often associated with lower back pain. Recent treatment options are limited and treat the symptoms rather than regenerate the degenerated disc. Cell-free, freeze-dried resorbable polyglycolic acid (PGA)-hyaluronan implants were used in an ovine IVD degeneration model.

View Article and Find Full Text PDF